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ABSTRACT

In this paper we deal with the weighted Banach algebra L&, (Rt %), where
*c is the cosine convolution product. We describe its character space
and its multiplier algebra. Our main results concern bounded algebra
homomorphisms from L} (RT, x.). We give a variant of Kisyriski’s theorem
for such homomorphisms and characterize them in terms of integrated
cosine functions. A generalized form of the Sova-Da Prato-Giusti theorem
about generation of cosine functions is also given.

Introduction

Let R,Rt and C be the sets of real, non-negative real and complex numbers

respectively, and let p be a non-negative Borel measure on R*. As usual,

the Banach space (L, (RT), | [|,.) is the set (of classes) of Lebesgue-measurable
functions, f : Rt — C, such that

£l == /OOO () du(t) < oo.

A bound for y is an element x € {—oo} UR such that (e_x)as>x C L, (RT),
where e_,(t) ;= e for t € RT.
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For two Banach spaces X and Y, we denote by B(X,Y’) the Banach space
of bounded linear operators from X to Y. Put B(X) := B(X,X). Recently,
W. Chojnacki has established the following result.

THEOREM 0.1 ([5], Theorem 1.2): Let p be a non-negative Borel measure on
R* with bound s, X a Banach space, and 7 : (k,00) — X a function. Then the
following conditions are equivalent:

(i) There exists T € B(L,,(R"), X) such that r(\) = T'(e_») for A > k.

(ii) The function r belongs to C(*)((k,00), X) and satisfies

_ [N
||THW7#7"6 ‘= sup ||tn€_kt|| 1n e NU {0}; A € (li, OO) < 0.
o
Moreover, if there exists T as in (i), then T' is unique and ||T'|| = ||7|lw,u,x-

Particularly interesting applications of the above theorem arise when one
considers spaces L/, (R*) endowed with an algebraic structure. Let w : Rt — R*
be a weight function, i.e., a continuous function such that w(s+t) < Cw(s)w(t)
for s,t > 0 for a constant 0 < C' < co. Then there exists k € R and M > 0 such
that w(t) < Me"t for t > 0. Moreover, the Lebesgue space (LL(R1),| o) is
a Banach algebra with respect to the convolution * defined by

t
fg(t) = /O f(t—=s)g(s)ds, f,g€ LLRY),
and the norm given by
9= [ U@kttt <oc, f € LL(ET),
0

We denote this algebra by LL(RT,*) (in particular, L'(R*, ) for w(t) = 1).
Let A be a Banach algebra. A continuous function r : (k,00) — A is a
pseudo-resolvent if the equation

r(A) = r(p) = (p = A)r(X)r(p)

holds for A\, pu > k. If (e—x)aswx C LL(RT), then (e_x)a>x is a pseudo-resolvent
in LL(RT, %).

J. Kisyniski was the first one to notice a connection between algebra homo-
morphisms (in particular representations) and pseudo-resolvents, see [3] and
[9]. The following theorem characterizes certain classes of pseudo-resolvents
and shows that (e_))as> is a canonical pseudo-resolvent for these classes.
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THEOREM 0.2 ([5] Theorem 5.1): Let A be a Banach algebra, w a weight func-
tion on R™ with bound k, and 7 : (k,00) — A, A — r(\) a pseudo-resolvent.
Then the following conditions are equivalent:
(i) There exists a bounded algebra homomorphism T € B(LL(R™), A) such
that r(\) = T'(e_y) for A > k.
(ii) The function r satisfies the Hille-=Yosida condition

! [r" ]

7wy = sup e ENU{ORAE (s %)} < oo.

Moreover, if there exists T as in (i), then T is unique and ||T| =

”THW,w,H-

Kisynski’s point of view allows generalizations of the Trotter—-Kato theorem
and has interesting applications in the generation of one-parameter and inte-
grated semigroups. In fact, a first version of Theorem 0.1 was derived directly
from the Hille-Yosida theorem in [3].

In this paper we consider the cosine convolution product *. in the Banach
space LL(RT) for certain weight functions w, see Section 1. We describe the
character space of the Banach algebra L. (R™,*.) and show that its multiplier
algebra Mul(LL(R™,*.)) is isomorphic to M, (RT,*.) (Theorem 2.6). Here
M, (R™) is the space of all Borel measures on R* such that

Il = [ (il < .

where |u| denotes the total variation of u.

In the third section we prove a variant of Kisynski’s theorem for algebra homo-
morphisms from L (RT,*.) (Theorem 3.1). Following similar ideas to those of
the case LL(R™, %) in [12], we consider in Section 4 integrated cosine functions,
fractional Banach algebras 7. ia) (Wa, *¢) (Which are contained in LY (RT, *.)) and
uniformly bounded limits of fractional homomorphisms, in order to characterize
algebra homomorphisms from L. (R*,*.) into a Banach algebra A (Theorem
4.8).

In the last section we prove a generalization of the generation theorem for
cosine functions on a Banach space (Theorem 5.3). The generation theorem for
cosine functions has been established by M. Sova in [17] and G. Da Prato and
E. Giusti in [7].

Our approach is closer to that taken in a paper of A. Bobrowski in [2]. Bo-
browski’s paper exploits the subalgebra L;Q(R) of even functions in the Banach
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algebra L, (R), where Q : R — R is a symmetric weight function, the norm is
defined by
|wm;i/ [F(t)|Q(t)dt < 0o, F € LH(R),

and the convolution product * given by
FxG(t) = / F(s —t)G(s)ds, F,G € LL(R).

Although L} o (R) is isomorphic to L} (R, *.) with w the restriction of Q to R,
we prefer to make use of the former rather than the latter. We work directly
with the structure of Rt without considering R* inside of R. Both papers share
a common spirit and some similar results are obtained after different starting
points (compare Theorem 3.1 and [2, Proposition 3.1]).

Notation: For z € C, Rz denotes the real part of z and Iz denotes its imaginary
part. Let X be a Banach space and T a linear (bounded or unbounded) operator
on X. Let p(T) denote the resolvent set of T and (A — T)~! the resolvent
operator for A € p(T).

1. The Banach algebra L (R, x,.)

In this section we consider in detail the Banach algebra LL(R*, x.): we show
that it has bounded approximate identities and its character space may be
identified with a half strip of complex numbers.

Definition 1.1: A continuous map 0 # w : RT — R* is an extendible weight
function if it satisfies

w(t+s) < Cw(t)w(s), w(t—s) < Cw(t)w(s), 0<s<t,
for some constant C' > 0. The infimum of such constants is called the growth

constant of w.

Note that w : Rt — R is an extendible weight function if and only if the
function Q : R — RY defined by
1), t>0,
(1.1) o) =1 12
w(—t), t<0,

is a weight function on R. Examples of extendible weight functions are
wt) =e wt) = (14+1t) and w(t) = e with x,v,t > 0.
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The proof of the following lemma is straightforward.

LEMMA 1.2: Let w be an extendible weight function.
(i) Then w(t) # 0 holds for any t > 0.
(ii) There exists M > 0 such that w(t) > M for any t > 0.

Define a convolution product o in the Banach space L. (R™) by

foglt) = / " f(s — t)g(s)ds,

fort > 0and f,g € LL(R™T). It is easy to check that fog € LL(R™), the product
o is non-commutative (see Example 1) and ||f o ¢llo < ||f|lwllg]lw- Products

and o are dual in the sense that

(1.2) / TR (f # g)(0)dt = / " F(t)(g o W@,

for f,g € LL(RT) and h € L°(R™), where the Lebesgue space L°(R™) is the
dual Banach space of LL(R*) given by

LE(RY) :={f: Rt — C|w(t) ! f(t)| is bounded for almost every ¢ > 0}.

Then the cosine convolution product . is defined by

1
[regi=5([xg+fog+gof), fgeL,RY),
see for example [16].

PROPOSITION 1.3: Let w be an extendible weight function on RT with growth
constant C and f,g € LL,(RT). Then:

@) [ [fTolgl+lglo[f] llw < Clifllwllgle-

(i) [f #c gl < Clfllullglle-

Proof. First we use definitions of the cosine convolution product and extendible
weight functions and then we apply the Fubini theorem. |

Let LL(R",%.) denote the Banach algebra which results from providing
LL(R*) with the cosine convolution product *.. It is straightforward that

(13) freglt) = 5(F=G)1), 120,

where F,G : R — C are defined by F(t) := f(|t|), G(t) := g(|t|) for t € R,
F,G € LL(R), and € is given by (1.1).
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The cosine convolution product *. has been considered by several authors,
see for example [16] and [18]; for w(t) = e"* with k > 0 see [13]. However, the
algebraic structure of L. (R™, *.) has not been studied in detail yet. Firstly we
check cosine convolution products of some known functions.

Example 1: Let w : Rt — R be an extendible weight function with bound
k > 0. Then the exponential function e_y belongs to LL(R*) for any R\ > &,
and satisfies

1 1
€E_NO€_, = T €y, E-xkEy = Y (e—x—€—y),
and
1
(1.4) Ex*eboy = 353 (Ae—y —ve_y),

whenever R\, Rv> k. Moreover, the linear space spanned by the set {e_,: v> £}
is dense in LL(R"), i.e., the set {e_,: v > k} is total in LL(R*) ([5, Proposi-
tion 2.2]).

Example 2: Set w(t) = (1 +t)Y with 0 < v < 1. The Poisson semigroup
(P*)g.>0 in L%1+\t|)v(R) is given by

1 =z

T 22+ 12’
Put p*(t) := 2P*(t) for t > 0. Then (p*)pz>0 C L{; - (R, %) and satisfies
the semigroup law, p* *. pz/ = pz"‘z/. This is due to the fact that

PA(t) = teR, Rz > 0.

pz e pz/ — Q(PZ * Pz/) — 2Pz+z’ — pz—i-z’

where we have used equality (1.3). The following estimate is readily seen:
IP* 140y SC(L+57), s>0.

Example 3: Let w be an extendible weight function such that w(t) < Me"t for
t > 0and kK > 0. Let Q be as in (1.1). The Gaussian semigroup (G*)g.>o in
L,(R) is defined by

G*(t) == Wimze /4% teR, Rz > 0.

Define g(t) := 2G*(t) for t > 0. Then (¢*)r.>0 C LL(R™, x.) and the following
semigroup law holds,

g° *. gz’ — gz-‘rz/’ §RZ,§RZ/ > 0.
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Moreover,
197l < M (|2]/(R2))2es" /%= 5z > 0,

PROPOSITION 1.4: Let w be an extendible weight function on Rt. The Banach
algebra LL,(RT, x.) has a bounded approximate unit.

Proof. By Example 3, (¢°)g.~0 C LL(RT,*.) and ||g°||, < C’ for s € (0,1).
We have to check that g% x. f — f for f € LL(RT,x.) when s — 07. Let Q be
given by equation (1.1) and put F(t) := f(|t|) for t € R. Then

5 > S 1 S
lg® *cf_wa:/ |G** F(t) = F)lw(t)dt = 5[|G° * F — Fllo — 0,
0

where we have used the fact that (G*)p<s<1 is a bounded approximate unit on
LER). W

For w an extendible weight function, let

oy := lim logw(t)/t = t11>1£ logw(t)/t.

t—o0

By the assertion (ii) of Lemma 1.2, the inequality o, > 0 holds. It is well-
known that the Banach algebra L. (R, ) is semisimple, its character space
A(LL(RT, %)) is homeomorphic to the half plane IT_,_ defined as

O, :={2€C: Rz > —0,},

and the Gelfand transform is the Laplace transform £ : LL(R*, %) — Co(Il_,,)
given by

L(f)(z) = /OOO fe dt, zell_ 4 ;

see these results, for example, in [6, Theorem 4.7.27].
Now we come back to the Banach algebra L{,(R) defined in the introduction.
It is semisimple, its character space A(L$(RR)) is homeomorphic to the strip

ﬁfcrw,aw = {Z eC: —0, <Rz< o'w}7

and the Gelfand transform is the bilateral Laplace transform £ : L (R) —
Co(M_y, o) defined as

L(F)(z) = / F(tye #dt, z€T_g, 4.,

— 00

see [6, Theorem 4.7.33].
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THEOREM 1.5: Let w be an extendible weight function. Then LL(R™,x.) is
a semisimple Banach algebra and its character space A(LL(RT,*.)) can be

identified with the half strip ﬁf% where

70w

+

ﬁf%ygw ={ze€C: —o, <Rz <0,;32z >0}.

The Gelfand transform is given by the cosine transform
C: LL(RT ) = Co(MT, ),

thus
+

C(f)(z):= / f(t)cosh(zt)dt, =z¢€ ﬁf%ygw.
0
Proof. If k > o,,, then w(t) < Ce~! for t > 0, and (e_))pa>x C LL(RT). Take
X € A(LL(RT, %)) and define

g(A) :i=x(e—x), RA> k.

Note that g # 0: if g = 0 then we use the fact that the set (e_x)ri>x is total
on LL(RT) to conclude that x = 0, which is a contradiction. Using Example 1,

we have

(15) 9N = 5 alw) — vg(N), AR > .

Since g # 0, it follows that g(k + 1) # 0 (otherwise, using the equality (1.5) we
conclude that g = 0). Taking v =k + 1 and z := 9&111) — (k + 1)%, we obtain
from the equality (1.5) that

g\) =NV +2), RA> k.

Take now z = —u? with u € C. Since the character  is continuous, we see that

A A1 x|
)\ = = < _ UJ<7
9O = |2z | = iy < I el <

for R\ > k. Now suppose that |Ru| > k. Then we take A = u or A = —u to ob-

tain a contradiction with the above inequalities. We conclude that —x < Ru < k
and —o,, < Ru < 0,,. Moreover, we have

AL / e_x(t) cosh(ut)dt,
0

for R\ > o,. Since the set (€_))ra>r i total on LL(RT), we obtain

() = /O " £(t) cosh(ut)dt = C(f)(w), | € LL(RY, %,).
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Note that C(f)(u) = C(f)(—u) for u € II_,_ .. In conclusion, given y €
A(LL(RT, %)) there exists u € ﬁtow,ow such that

X(f):C(f)(u)v fGLi;(]RJra*C)'

Conversely, it is readily seen that f — C(f)(u) is a character on L. (RT,x*,)
with u € ﬁtgw%,
character space A(LL(RT, .)) can be identified with the set o

In order to show that L (R¥, «.) is a semisimple Banach algebra, it is enough
to check that C : LL(R*, x.) — C’O(ﬁtgm%) is injective, see for example [6,

Corollary 2.3.26]. Take f € LL(R™,*.) such that C(f) = 0. Then

see similar ideas about cosine transforms in [13]. Thus the

Ow,0w"

1 [ 1 —
0= =5 [ PO at= LW, uweTan,
where F(t) := f(|t|) for ¢ > 0. By the analytic continuation principle, we have
L(F)(u) =0 for every u € lI_,_ . Since L, (R) is semisimple, it follows that
F=0and f=0. |

2. The Banach algebra Mul(LL(R™,*.))

For a commutative Banach algebra A, let Mul(A) denote the subspace of
bounded linear operators on A, T : A — A, such that

T(ab) = aT(b), a,be A.

The space Mul(.A) is a Banach algebra with respect to the composition and the
operator norm. It is usually called the multiplier algebra of A.

In the case that w and Q are weight functions on RT and R respectively, the
multiplier algebras of LL(R™, %) and L, (R) may be identified with the space of
Borel measures on Rt and R of total variation,

MU‘Z(Li)(RJrv *)) = MW(RJrﬂ *)7 MUZ(L%Z(R)) = MQ(R)ﬂ

where 2 means “isomorphic” as Banach algebras, see for example [4] and [6].
We remind that the convolution product u * v of two measures u,v € M, (R™)
is defined by

(e )(A) = [ w(acnavie
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where A6t ={s€R": s =a—t for some a € A} for a Borel set A on R and
puxv € My(RT), see for example [4]. In this section we show that

Mul(L}U(RJr, o)) = M, (RT, ).

Let Cp o, (RT) be the space of all continuous functions f on RT such that there
exists M > 0 with
|f(t)]| < Mw(t) forallt>0,

and Cp ., be the space of all continuous functions f on Rt for which
tlim f@®)/w(t) = 0.
Endowed with the norm
[[flloo.w = sup{[f(£)[ /w(t): t = 0},
Chw(R1) and Cp ,(RT) are Banach spaces. It is well-known that the topological
dual space of Cy ,(RT), (Co .o (RT)), is isomorphic to M, (R™). In fact, for every
T € (Co(RT)) there exists a unique pu € M, (R™) such that
10 = [ fOd(0. f e Cou®)
0

see [4]. Let p € M,(RT) and f € LL(R"). Then px* f € LL(RT) where

t
px f(t) = / f(t —s)du(s), teR™,
0
and ||p* fllo < Cllpllw|lfllw- We now consider other convolution products.

Definition 2.1: Let p € M,(RT) and f € LL(R™,*.). We define fopu, o f and
pxe | by

Foutt) = [ 5= sdute), o £0)= [ s+ )G
1

pre f(t) =5 (ux frpo f+fou(t),

for ¢ > 0.

Note that f*.dy = f where §y is the Dirac measure on 0 and f € LL(R™, x.).
The following proposition is readily established.

PROPOSITION 2.2: Let w be an extendible weight function on RT with growth
constant C, p € M,(R*) and f,g € LL(RT). Then:

(i) fop,po fp*. f € LLRT);
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(ii) pxe (f *cg9) = f*c (1 *c 9);
(i) || o f =4 foplle < Cllullwllfllw:
(iv) e e fllo < Cllulloll fllw-

The next lemma is needed in order to prove the main result of this section.

LEMMA 2.3: Let w be an extendible weight function on R*, h € Cy ,(R") and
f,g € LL(RY). Then:

() h*f,hOf th h* fGCOW( )

(i) [y~ h(E)(f *c 9)( = 7 f(t)(h e g)(t)dt.

Proof. (i) It is clear that functions h * f,h o f, f o h,h *. f are continuous.
Moreover, we use the property that w(t — s) < Cw(t)w(s) to prove that

|</|ht—s||f Jlds = Cw(t) /'h ()| f(s)lds,

for t > 0 and h* f € Cp(RT); in a similar way we prove that ho f, foh €
Cow(RT) and so h*. f € Cp o (RT).
By part (i) and Fubini’s theorem, we obtain

/ TR (F o g) ()t = / " F(0) (o g) (0,

/0 T ht)(go eyt = / " 509« W) @)t

With these two equalities and (1.2) we conclude the proof of (ii). |

Definition 2.4: Let A be a Borel set on Rt and ¢t € RT. We define the Borel
set t P A as
toA:={seRT:s=t+a forsomeac A}.

Given u,v € M,(RT), define po v, pu*.v € M,(RT) by
1
pov(A) ::/ v(t® A)du(t), p*cv:= 5(#*V+MOV+V°M)~
R+
The proof of the following proposition is straightforward.

PROPOSITION 2.5: Let w be an extendible weight function on R™ with growth
constant C, f € LL(RT) and p,v € M,(RT). Then:
(i) pov,p*cv € My(RY);
(i) e vl < Cllullolvllo;
(iif) (p*cv)*c f = p*c (Ve f).
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Let w be an extendible weight function on Rt with growth constant C.
Then, when endowed with ., the Banach space M, (R") is in fact a
Banach algebra. We denote it by M,(RT,*.). Let us define the map
T: M,(RT, %) = Mul(LL(R™, *.)), p+— T}, by

Tu(f) = e f, fELi:(R-Fa*C)'

Since ||p#e fllo < Cllpllwl|fllw (Proposition 2.2 (iv)) and pk.(f*cg) = fxc(u*eq)
for f,g € LL(RT, *.) (Proposition 2.2 (ii)), it follows that 7}, is a multiplier on
LERY ), | T, < C|lpllw and ||T'|] < C. Moreover, using Proposition 2.5 (iii),
the map T is an algebra homomorphism: if u,v € M,(RT) and f € LL(RT),
then

T,u*cu(f) = (N *c V) *e f = M *c (V *c f) = T#(Tu(f))

THEOREM 2.6: The map T is a bounded algebra isomorphism from M,,(R™, x..)
onto Mul(LL(RT, ).

Proof. 1t is enough to show that each S € Mul(LL(R™T, x.)) is equal to T}, for
some p € M, (R1) such that ||u||, < M]S| for some M > 0.

Since LL(R*,*.) has a bounded approximate identity (Proposition 1.4), for
each S € Mul(LL(R™, *.)) there exists a net {sg}gep C LL(RT,*.) such that

(1) S() = lmy(sp xc ). € LLRT ),

and supge g |5/l < M||S|| (cf. [4, Proposition 2.1}).

Note that {sg}gen C (Cow(R")) and by the relative weak* compactness of
bounded sets in (Cp ., (R1))’, there exists p € M, (R") and a subnet (which we
write in the same way), {s3}gen, such that

oo

22l [ o0sod= [ a0duo, g Cou®)

and ||u|| < M||S||. Take fe LL(RT) and vy € Cp o, (RT). Then ¢*. f € Cp o (RT)
by assertion (i) of Lemma 2.3, and

/0 W e F)(B)s5(t)dt = / B (sp #e N,

by assertion (ii) of Lemma 2.3. Using the same ideas, it is easy to check that

/0 @ we F)(0)d(t) = / @) re HBdt.
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Now we can write (2.2) as

/Omw)(u*cf dt*hm/ ()55 %o f)(0)dE = /w

where we apply (2.1). Since v is an arbitrary element of Cp,(R™T), we have
S(f) = [ *cp. i

Remark: The above proof was inspired by the proof of [4, Theorem 3.2]. In
fact, Chojnacki’s theorem is an adaptation of a result of J. G. Wendel on group

algebras, see more comments and details in [4].

3. A variant of Kisyniski theorem on L. (RT,x,.)

Let w be an extendible weight function with bound k, A a commutative Ba-
nach algebra and r : (k,00) — A a function. By Theorem 0.1, there ex-
ists T : LL(RT) — A such that r(A\) = T(e_)) for A > & if and only if
r € C(*)((k,00), A) and
[Pl ww,x < oo
Next we prove a result similar to Theorem 0.2 for the algebra L. (R™T,x.).
For w(t) =1 this results appears in [2, Proposition 5.1].

THEOREM 3.1: Let A be a Banach algebra, w be an extendible weight function
on R with bound k > 0, r € C(*)((k, 00), .A) such that
Il ww,k < 0.

Then the following conditions are equivalent:
(i) The bounded homomorphism T : LL(R™) — A such that r(\) = T(e_»)
for X > k is an algebra homomorphism T : LL(R*, x.) — A.
(ii) The function (r(vV/'A)/vVA)xsx2 is a pseudo-resolvent on A.

Proof. We define R(\) := r(v/A)/VA for A > w2, (i) = (ii) If \,v > #2, then

R(MNR(v) = \/Xl\/;T(eﬁ)T(e_ﬁ) = \/_%\/;T(e\f/\ ke €_ /)

_ ﬁ;ﬁT(ﬁmeﬁ Ve 5))
1

=3 i ” (\%T(e—ﬁ) - ﬁT(e—ﬁ)) =5 (R() = R(V)),

where we have used the equality (1.4).



266 P. J. MIANA Isr. J. Math.

(ii) = (i) Since the linear space spanned by the set {e_,: v > k} is dense
in LL(R") ([5, Proposition 2.2]) and T is linear and bounded, it is enough to
check that

T(e_x*ce_y) =T(e_x\)T(e_y),
for \,v > k. Since (R(A))x>x2 is a pseudo-resolvent, we have
Av
N2 _ 2
= S ) = vr(N) = Tle e e

where we have used again the equality (1.4) for A\, v > k. n

T(e_\)T(e_,) = MuR(\)R(V?) = (R(v?) — R(\?))

In Example 3, Section 1, we defined the Gaussian semigroup in LL(R™, x.).
We now consider the Gaussian transform G : L}Jg (RF, %) — LL(RT,*.) given
by

G5 = [ g e, s eRY, J e L (R ),
0
where wy(t) := ||¢"||. for ¢ > 0. Then

1
7X€7JX7 )\>:"€2,

(cf. [15]) and G is an algebra homomorphism with ||G|| < 1.
Let X be a Banach space and T' € B(LL(RT), X). The Gaussian transform
allows one to define Tg € B(L,, (RT), X) by

To(f) :=T(G(f)), €L, RY)

COROLLARY 3.2: Let A be a Banach algebra, w an extendible weight function
on R with bound k > 0 and r € C(*)((k,0), A) such that

(3.1) Gle_y) =

Il ww,n < 00.

Then the following conditions are equivalent:
(i) The bounded homomorphism T : LL,(R*) — A is an algebra homomor-
phism, T : LL(RT, *.) — A, with

r(A) =T (e~y), A> k.

(ii) The bounded homomorphism Tg : Li)g (RT) — A is an algebra homo-
morphism, Tg : ng (R*,*) — A, such that
r(vV/)

Tg(G,A): \/X ) A > K2,
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(iit) The function (r(v/X)/VA)asx2 is a pseudo-resolvent on A.
Proof. The implication (i)=-(ii) follows from the identities

To(f * g) = T(G(f *9)) = T(G(f) ¥ G(9)) = Ta(/)Tc(9), [f.g € Ly, (R, %).

The implication (ii)=-(iii) is part of Theorem 0.2 and (iii)=-(i) is part of Theo-
rem 3.1. |

4. Algebra homomorphims and integrated cosine functions

In this section we characterize bounded algebra homomorphims from L} (R¥, x.)
in terms of integrated cosine functions (Theorem 4.8). To show this we use
certain fractional Banach algebras 7. _‘Sa) (Ta» *¢) which have been introduced in
[11]. We also need to give an extension of a result of [12] about uniformly
bounded limits of fractional homomorphisms (Theorem 4.6).

Let D4 denote the set of test functions of compact support in [0, c0), and S
denote the Schwartz class on [0, 00), i.e., functions that are infinitely differen-
tiable and satisfy

sup
>0

dn
t"m—f(t
0] <

for any m,n € NU {0}.

Given f € S, the Weyl fractional integral of f of order o > 0 is defined
by

—a 1 o a—
Wi f(u) == @/u (t —w)* L f(t)dt, u>0.
This operator W, “ : S; — S, is one to one, its inverse, W¢, is the Weyl
fractional derivative of order o and
(_1)n dn /OO o

W F(t) = _ @ d t>0
+f() F(nfoz)dt” . (S ) f(S) S, — Y
holds with n = [a] + 1, see for example [14]. It is easy to check that W¢ f =
(=1)*f(®) if o € N. The semigroup law Wf+ﬁf = Wf(Wff) holds with a, 8 €
R, W9 =1d, and W(f2)(t) = X*W(f)(At) with A > 0, if fx(t) := f(At) and
f eS8y (cf [14]).

Example 4: If A > 0, then e_) € &4 and

WIQ(E,,\) == )\_aef,\.
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Therefore, We_y = \*e_ for a € R. We define functions (3,,x)nen,r>0 by
ﬁn,k(ﬁ) = ﬂle_kt, t>0.

Note that 3, A(t) = (=1)"(d/d\)™e_x(¢t) for t,A > 0 and n € NU{0}. To give
the value of W¢(3,,x) in Theorem 4.2, we show the following lemma.

LEMMA 4.1: If « € R and f € Sy, then
WE(sf(s))(t) = tWE () — aWSTLf (), 1> 0.
Proof. The case a < 0 is shown in [14, p. 246]; if a > 0 we have
WA (sWEf(s) — aWgT™ f(s))(t) = tf(t) + aW f(t) — aW I f(E) = tf(D)
with ¢ > 0. |
Polynomial solutions of the differential equation
2y"(2) + (@ + 1= 2)y(2) + ny(z) = 0,

withn =0,1,2... and a € C, are called generalized Laguerre polynomials,
and are denoted by L%a ), They satisfy a Rodrigues’ formula,
z—ael dTL

4.1 L (x) =
(4.1) n () 1 dan

(xn+ae—z)

)

see [10, p. 241], and we have

1@ = (T ser

n—m/)m!’
m=0

where (") = (&2t nm 504 (a), = a(a+1)--- (@ +n—1).

n—m (n—m)!
Generalized Laguerre polynomials satisfy several recurrence equalities, see

[10, p. 241], one of them being
(4.2) 2L (2) = (n+ a+ 1)L (@) — (n+ 1LY, (), z€R.
THEOREM 4.2: Let « € R, n € N and A > 0. Then

W (Bu)(t) = A e M (=1)"nl LI (At), t>0.

Proof. Note that it is enough to show that

L™ () = (n—lfewwg(t"e—t)(z), x>0,
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We prove this by induction on n. Take o > 0; for n = 1 we apply Lemma 4.1
to get
W (te™")(2) = 2WE(e ) (z) — aW e e ) (@) = e *(z — a) = =L V(a).
Consider the case n + 1. By Lemma 4.1 we obtain that
We e ) (z) = aW(t"e ") () — aW e (e ) (z), = >0,
and by the induction hypothesis,

W e (x) = e~"nl(~1)" (:chf“*") () — aLCS ™™ (x)) . x>0

Then we apply the recurrence formula (4.2) to derive that

Wf(t"'i_le_t)(l') — e—zn!(_l)n(_l)(n + 1)[/51&_;17171)(1‘)

= e (1) (n + DL @) 2> o0,

The case a < 0 can be proved in a similar way. ]

In the remainder of this section we consider a continuous non-decreasing
weight w : Rt — RT with w(0) # 0 and bound £ > 0. Then w is an extendible

weight due to the fact that
w(t—s) <wl(t)

< w(t)

Let 7,(t) := t®w(t), a > 0 and let (R?);~¢ be the family of Riesz functions
given by

=Cw(t)w(s), 0<s<t.

_ )0
RS = 1o x0(o)

with ¢,s > 0 and § > —1.

THEOREM 4.3 ([11, Theorem 3]): Let a > 0. Then the expression

! ) / T (OIWEF(B)dt, [ €Dy,

Gr. (f) = m

defines a norm on D,. We denote by TJEQ)(TQ) the Banach space obtained as
the completion of D in the norm q,_,. The following assertions hold:
(i) T (10) = T (t*) = LY(RY) and T (r,) — LL(RY).
(ii) ’T_ﬁﬂ)(m) — T_ﬁa) (7); in particular, T_ﬁﬁ) (t?) — 4EO‘)(ﬁa).
(iii) R/t € ’Tia)(m) witht > 0 and v > a; and q,, (R} ™) < Cy ot" "7, (t)
fort > 0, where C, o, > 0 is independent of t.
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Moreover, ¢r,(f *c 9) < Cagr,(f)gr.(g) for f,g € D4, and C > 0 is inde-
pendent of f and g. We denote by Tﬁa)(fa, *.) the Banach algebra obtained as
the completion of D in the norm q,, with the cosine convolution product ..

Example 5: If A > k, then e_) € T_ﬁa) (7o) and
qr. (€23) < AY/(\ — r)>TL

Since Byx = nle_y*---xe_y for n € NU{0} and A > 0, we obtain 3, \ €
—_——

n+1 times

Tﬁa)(Ta) for n € NU{0} and A > .
Example 6: Solutions of the Hermite differential equation
w”(2) — 220’ (2) + 2vw(z) = 0,

with v € C are called Hermite functions of order v, and are denoted H,. For
v € N, the functions H, are polynomials known as Hermite polynomials. They
satisfy a Rodrigues’ formula

n
adn e

dz" ¢

Moreover, for v € R, some Hermite functions satisfy that

H,(z)=(-1)"e

W2 (e ) (t) = e CH,(t), teR,
and
(4.3) |H,(2)| < Cy(1+2]"), v>0, Rz >0,
see for example [8, p. 344].

PROPOSITION 4.4: Let (9%)n.>0 be the Gaussian semigroup. Then (g*)n.>0 C
T_ﬁa)(Ta) and
oy G

z K222/ Rz
QTQ(g )Scae =%/ ((éRZ W‘FH W), Rz >0,

where 7, (t) < Ct®e*t for x,t > 0.

Proof. Note that for a, z > 0,
1 o

W

Ve e

1 t 2
)eft /(42)

WE(g%)(t) = )(t) = 3o Jmarn/z o (2\/2
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for t > 0 and then for z € C*, because of the analytic continuation principle.
Now we apply (4.3) to obtain

z 1 > —t?Rz/4|z|?
r, (97) < W/o [Ha(t/(2v/z))]e To(t)dt

Ca > |2 —t2Rz/4|2|? 1o Kt

We change the variable u = tvVz/(2|z]) — (k|z|)/VRz, and get
iy

3a+1/2
o (?Rz)o“rl/? 4 g2 |Z| )7

z K222/ Rz
4ro(97) < Cae (( (Rz)20+1/2
for £z > 0. |

LEMMA 4.5: The function (k,00) — TJEO‘) (Ta), A +— €_y is infinitely differen-
tiable in the norm topology of Tﬁa) (7o) and
d"e_,\
dAn
for each n € NU {0} and X\ > k.

= (_1)nﬁn,ka

Proof. Take A > k. Then
n d'fL

oo dn _AQ, )
— (— — (_1\" s s >
Bualt) = (1" Gmen® = (1" [ 2 (3 ) gt s 120,
where we use the equality (3.1). Note that

/000 dd;L ()

by Proposition 4.4 and we obtain that

r, (g%)ds < o0,

n < dr —\%s s _ n d"
ﬁn,k = (_1) /0 W ()\6 )()\)g ds = (—1) I €_X\,

in the norm topology of ’]]Ea) (Ta)- [ |

The next result is a generalization of [12, Theorem 3.1] concerning bounded
limits of fractional homomorphisms.

THEOREM 4.6: Let X be a Banach space, w a continuous non-decreasing weight
with w(0) # 0 and bound k > 0; and 7,(t) := t“w(t) for t > 0 and o > 0.
(i) For every bounded homomorphism T : LL(R*) — X, there exists a
family of bounded homomorphisms Ty, : Tﬁa) (ta) — X, a > 0, such
that | To|| < ||T|| and Tu(e—x) = T(e—y) for each X € (k,0).
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(ii) Conversely, if for each o > 0 there exists a bounded homomorphism
T, : ’]]fa) (o) — X such that T, (e—») does not depend on « for each
A € (w,00) and limsup,_,o+ ||[Twl| < oo, then there exists a unique
bounded homomorphism T : LL(R') — X such that T(e_y) = Ta(e—»)
for each A € (k,00), @ > 0 and ||T|| < limsup,_,o+ ||Tall-

Proof. The first part follows from 7, _‘Sa) (7o) = LL(RT), see part (i) of Theo-
rem 4.3. To prove (ii), we use Theorem 0.1. We define r(\) := T,(e_») for
each A > k. The family (r()\))xe(w,o0) is well-defined. We apply Lemma 4.5 to
obtain 7(™(\) = (=1)"Ty(Bn.») and Theorem 4.2 to conclude that

Tolln! on [ _ _
@\ < |IT, :Ha7v "/ AL (a=n) (g [490 () dit
7" N < N Tall gro (Bn,r) Tla+1) | e Ly (M) [t w(t)dt,

for each n € N, A € (k,00) and o > 0. Since

lim L™ () = (=1)"(At)"/n,

a—0t+

we have

Ir™ V)] < linﬂSHPHTaH/ t"eMw(t)dt = limsup || Tu | || Ba,alles
0 a—0t+

a—0t
for each n € N and A € (k,00). By Theorem 0.1 there exists a unique bounded

homomorphism 7" : LL(RT) — X such that T(e_y) = r(\) = Tn(e—») for each
A € (k,00) and ||T|| < limsup,_o+ [|Ta]- n

To finish the section we characterize bounded algebra homomorphisms from
LL(RT,*.) into a Banach algebra A. The case of L. (R*, ) has been considered
in detail in several papers ([3], [4, Theorem 3.3], [9, Section 10]). In our setting,
cosine functions need to be considered.

Definition 4.7: For any a > 0, an a-times integrated cosine function is a
continuous mapping ¢ (- ) : [0,00) — A such that ¢, (0) = 0 and satisfying

t+s S
20 (@) cq(t)ca(s) :/t (t+s—1)""Leg(r)dr — /0 (t+s—1)*"teg(r)dr

(4.4) + /t (r—t+ ) teg(r)dr + /08(7“ +t—8)* ey (r)dr

—S

whenever t > s > 0.
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If (ca(t))i>0 is an a-times integrated cosine function in A, then (¢, (t))i>0,
where

1 ! N
- - — )V >
T —a) /0 (t—29) cal(s)ds, t>0,

is a v-times integrated cosine function in A for every v > « . The set of

e (t) ==

Riesz functions (R} ™');>0 is an example of v-times integrated cosine function
in T_ﬁa) (Tas *c) for v > a > 0, see [11].
The following result is inspired by [12, Theorem 4.2].

THEOREM 4.8: Let A be a Banach algebra, w a continuous non-decreasing
weight with w(0) # 0 and bound k > 0. Let 7,(t) := t®w(t) for t,a > 0 and
r € ) ((k,00), A) such that

r(F) (A
M = sup { |Htk ()\t|)|| ke NU{0}, )\ € (k, oo)}

Then the following conditions are equivalent:
(i) M < oo and (7(vV'X)/VX)xsx2 is a pseudo-resolvent on A.

(ii) There exists a bounded algebra homomorphism T : LL(R*, *.) — A
such that T'(e_») = r(\) for each X € (k, ).

(iil) For any a > 0, there exists an «- tjmes integrated cosine function
(ca(t))e>0 in A such that ||cq(t)]] < F(a—i—l) Ta(t) for some constant C' > 0
and every t > 0, and r(A) = X* [[° e e (t)dt for A > k.

(iv) For any a > 0, there exists a bounded algebra homomorphism T,
Tﬁa) (Tay *¢) — A such that Ty (e_y) = r()\) for each X € (k,0) and
SUPa>0 HTaH < 0.

Furthermore, if there exists a bounded algebra homomorphism

T:L LR %) — A

such that T(e_y) = r(\) for each A € (k,00), then it is unique, T'(f) = Ta(f)
for f € T_‘Ea)(m) and every a > 0 and

M = |7 = sup | Tall = inf {C': Jlea(®)]| € Cra(t)/Ta+1), ¢ =0},
a>0

Proof. (i) < (ii) is the content of Theorem 3.1. (ii) = (iii) Noting that, for
each t > 0, the Riesz function R®' is a member of LL(RT,*.), we define
ca(t) == T(R}1) for t > 0 and c,(0) := 0. Since (R® ')i~o is an a-times
integrated cosine function in LL(RT,%.), (ca(t))i>0 is an a-times integrated
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cosine function in A and

a— |2
lea@®IF < ITIIRE o < I T3 w(t),

(a+1)
for ¢ > 0. By the continuity of T', we have

)\“/ e Mo (t)dt = )\“T(/ e—”R;“—ldt) = \OT(W%_y)
0 0

=T(e_x) =71(N)

for A>w. (iii) = (iv) We define Ty, : 7L (74, %c) — A by

T.0)= | T Weftea(tdt, feD..

Following the same arguments as in [11, Theorem 4], we prove that T, is a
bounded algebra homomorphism with ||T,]] < C < oo for any @ > 0. Since
€_x € Tia)(Ta) for X >k and W (e_y) = Ae_x, we have T, (e_x) = r(\) for
A > K.

The implication (iv) = (ii) follows from assertion (ii) of Theorem 4.6.

Finally, if there exists a bounded algebra homomorphism 7" : LL (RT, *.) — A
satisfying T'(e_») = 7()\) for each A\ € (w, ), then T_ﬁa) (7o) — LL(RT) and
T(f) =Tu(f) for f € T_ﬁa)(Ta) and for all & > 0. Moreover, we have collected
in the proof the following inequalities,

taewt

171 = M = sup | Tl| < inf {C  ea(t)] < O t= 0} < |7,
a>0

(a+1)

whence we get the equality. |

5. Representations and the generation theorem for cosine functions

The main purpose in this section is to extend the Sova-Da Prato-Giusti theorem
on generation of cosine functions (Theorem 5.3). Our generalization allows
one to give a new proof of the classical generation theorem as a corollary of
the variant of Kisynski theorem on LL(RT,x.) (Theorem 3.1). Moreover, we
may conjeture that the Sova-Da Prato-Giusti theorem and Theorem 3.1 are
equivalent, see [3].

Let A be a Banach algebra and X a Banach space. A bounded algebra
homomorphism from A into B(X) is called here a representation. Suppose
that 4 is commutative and has a bounded approximate identity {e;, }nen. Given
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a representation ® : 4 — B(X), the regularity space R4 is the closed linear
span of {®(a)z: a € A, x € X}, so that

Re ={x € X: lim ®(e,)x =z}
(cf. [4]). By Cohen’s theorem, Rgp = {®(a)z: a € A, x € X} and there exists a
unique representation ® : Mul(A) — B(Rg), called the extended represen-
tation of ®, such that

®(T)z = ®(a)z, z€ Ra,

where T, (b) := ab for a,b € A. Moreover, ||®| < ||®| < (liminf, |le,|) ||®]|, see
[4, Theorem 2.4].

Consider now the case A = LL(R*,*.), where w is an extendible weight
function and Mul(LL(RT,*.)) = M, (R",*.) (Theorem 2.6). Then any repre-
sentation ® : LL(RT, ) — B(X) can be extended to & : M, (R, %.) — B(Ra).

The set of Dirac measures (d:);>0 plays an important role in relation to
LL(RT,%): the family (6;)¢>0 is contained in M, (R™,*); the semigroup prop-
erty 8; x 0s = 44 holds for t,s > 0 and Tj,f —,_o+ f on LL(RT, %), where
Ts, f(8) := d: * f(s) = f(s —1t) for s,t > 0. Here we discuss the role of Dirac
measures (0;)¢>o in connection with LL(RT,*.). We start by recalling some
definitions and results about cosine functions which can be found in [1].

A map C(-):[0,00) — B(X) satisfies the cosine functional equation if

2C(t)C(s) =C(t+s)+C(s—t), s>t>0,

and is a cosine function when, in addition, it is strongly continuous in [0, 00)
and C(0) = Ix. An operator (A, D(A)) is the generator of a cosine function
(C(t))tzo, when

DA)={zeX:C(-)zecC?(0,0),X)}, Azx=C"(0)z for z e D(A).

The generator of a cosine function (A, D(A)) is densely defined. Also, a cosine
function is always exponentially bounded (i.e., there exist M, > 0 such that
|C(t)|| < Me™ for t > 0), and we have

AN —A) e = / e MC()xdt, N>k, x€X.
0

It is readily seen that §; o §s = 65— if s > ¢; §t 065 =0 if s <t and

(5.1) 2(0¢ *¢ 05) = Op4s +0s—¢, 52120,
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LEMMA 5.1: The family of operators (Ts,)>0 defined by
T(Sf,(f) ::615 *cfa t207 fELiJ(R+a*C);

is a cosine function on LY (R™, x.).

Proof. We write C(t) := T, and consider the map C' : [0,00) — B(LL(R™,*.)).
This map C( - ) is well-defined (see Section 2) and the cosine equation holds from
the equality (5.1). We need to check that the map t — C(t)f is continuous on
LL(RT,*.). But this is a consequence of the equality

1

= 5 (Xttoo) (W) (=) + F(t + ) + X0, () £ (£ —w))

C)(f)(w)

for t,u > 0. |

In the next result we consider representations of LL(R*,*.) on X; see
[4, Theorem 3.3] for the case LL(R™, x).

THEOREM 5.2: For a representation ® : LL(R",x.) — B(X), let Re be the
regularity space of ® and let ® : M, (R, x.) — B(Rg) be the extended repre-
sentation of ®. For each t > 0, put

Ct) == &(Ts,), t>0.

Then (C(t))i>o is a cosine function on Re such that ||C(t)]] < ||®|w(t) for
t >0, and

B(f)r = / " f()C @),

forz € Re and f € LL(RT, ).

Proof. From Lemma 5.1, it is straightforward to check that (C(t)):>¢ is a cosine
function on R¢ and

le@l < 1016l = [[Dllw(t), ¢ > 0.

Now we consider ® : LL (RT,*.) — B(Rq¢) and define ¥ : LL (R, x.) — B(Ras)
as

U(f)r = / " ) C b)edr,
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for # € Re and f € LL(R*,*.). The map ¥ is a bounded algebra homomor-
phism ([13, Theorem 3.3]) and

U(e_y)z = / e MC(t)xdt = / e MO(Ty, )xdt = <f></ eMTgt)x
0 0 0
= (T, _, )z = B(e_y)z,

for x € Ry and A > k, where k is a bound of w. Since the linear span of
(€_A)a>x is dense in LL(RT, *.), we obtain that

w(f)e= [ Hoc(at
for v € Re and f € LL(RT, x.). |
Remark: In fact, it can be proved that

i(TM)x = /000 C(t)zdu(t), =€ Ra, p€ My(RT, ),

along the same lines as in [4, Theorem 3.3].
Let w be an extendible weight with bound £ > 0 and r : (k,00) — B(X) a

function such that

(5.2) r(Nr() = ﬁww — (), A s

We define the regularity space of r as
R ={zxeX: Alim Ar(N)z = x}.

It is clear that if r : (k,00) — B(X) satisfies (5.2), then R : (xk%,00) — B(X)
given by

RO\ ==r(VA)/VA, A> k2
is a pseudo-resolvent on B(X). Moreover, Rp = R,., where R is the regularity
space of the pseudo-resolvent (R(A))xs .2 defined by

Rr:={zreX : /\Hm AR(N)x = z}.

If ||r|wwx < 0o, then there exists a representation ¢ : LL(RT, x.) — B(X)
such that r(\) = ¢(e—x) for A > k (Theorem 3.1). It will be called the repre-
sentation associated with r. Since LL(R™,x*.) has a bounded approximate
identity (Proposition 1.4), we may consider the regularity space Rg. It turns
out that
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In particular, R, is invariant for all ¢(f) with f € LL(R™), and any element of
R, can be represented as ¢(f)z for some f € LL(RT) and x € X.
Now we give the announced generalization of the Sova-Da Prato-Giusti the-

orem.

THEOREM 5.3 (Generalized Sova-Da Prato-Giusti theorem): Let w be an ex-
tendible weight with bound k > 0, X a Banach space and r : (k,00) — B(X) a
map such that

rNr(p) = =3 (Ar(e) —ur(A), - A pu>x,

-
in B(X) with
17l wyw, e < 0.
Let ¢ : LL(RT,*.) — B(X) be the representation of LL,(R", x..) associated with
r. Then there exists a unique cosine function (C(t))¢>0 on R, such that
(5.3) Ct)o(f)z = o(T5,.(f))=,

fort >0, f € LL(RT,.) and x € X. Moreover, the cosine function (C(t)):>0
satisfies

r(ANz = / e MO (t)xdt,
0
for \ >k, x € R, and ||C(t)]| < Mw(t) fort > 0.

Proof. Applying Theorem 5.2 to the representation ¢ : LL(RT, *.) — B(X) as-
sociated with 7, we see that there exists a cosine function (C(¢))¢>0 on Rg(= R;)
such that ||C(t)|| < Mw(t) for t > 0. The cosine function (C(t)):>o satisfies

CBo(f) = To,)d(Ty) = 6(Ts,e.s) = &(Ts,(f),
for t >0 and f € LL(R*, .) and

r(Na = ¢le_y)z = /000 e MO (t)xdt,

for € R, and A > k. Finally, the uniqueness of (C(t));>0 follows from (5.3)
and the fact that every element of R, can be represented as ¢(f)x for some
feLLYRT x.)andze X. 1

Let R = (R(M\))asx be a pseudo-resolvent on B(X). It is known that the
kernel and range of R(\) are independent of A, so we denote them by ker(R) and
Im(R) respectively. Note that (R(A))xsx is the resolvent of a densely defined
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closed operator (A, D(A)), i.e. R(\) = (A — A)~!, if and only if ker(R) = {0}
and m =X.

We conclude the paper by deducing the Sova-Da Prato-Giusti theorem from
Theorem 5.3.

THEOREM 5.4: Let (A, D(A)) be a densely defined operator on a Banach space
X. The following assertions are equivalent:
(i) (A,D(A)) generates a cosine function.
(ii) There exist k, M > 0 such that (x%,00) C p(A) and
1 dn
—(\= n+1
Al AR

for all A > x and n € NU {0}.

AN =A™ <M,

Proof. (i) = (ii) There exist k > 0 and M > 0 such that ||C(t)|| < Me"'. Take
w(t) := e~ for t > 0 and define ® : L1 (RT, x.) — B(X) by

e(f)e = [ FOC(H,
0
for z € X and f € LL(R™,x.). Note that

Dle_\) = AN = A7 A> 5,

and [[t"e~ ||, = n!/(A — k)"T! forn € NU{0} and A > x. Applying Theorem
0.1, we obtain
1 d’rL
= _ n+1
n! ( ) dxn
for all A > x and n € NU {0}.
(ii) = (i) Let r(\) := A(A\? — A)~! for A > k. Then

P) = Tl = (). >

(AN = A)7H| < M,

I7lwwxs < oo with w(t) = et for ¢ > 0. Then, applying Theorem 5.3, we
obtain a cosine family (C(t));>0 on R,. Note that R, = Im(R) = X (where
R(p) = (u—A)~! for p > k?). It is easy to check that (4, D(A)) is the generator
of (C(t))i>0. N
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