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ABSTRACT

In this paper we deal with the weighted Banach algebra L1
ω
(R+, ∗c), where

∗c is the cosine convolution product. We describe its character space

and its multiplier algebra. Our main results concern bounded algebra

homomorphisms from L1
ω
(R+, ∗c). We give a variant of Kisyński’s theorem

for such homomorphisms and characterize them in terms of integrated

cosine functions. A generalized form of the Sova-Da Prato-Giusti theorem

about generation of cosine functions is also given.

Introduction

Let R,R+ and C be the sets of real, non-negative real and complex numbers

respectively, and let µ be a non-negative Borel measure on R+. As usual,

the Banach space (L1
µ(R+), ‖ ‖µ) is the set (of classes) of Lebesgue-measurable

functions, f : R+ → C, such that

‖f‖µ :=

∫ ∞

0

|f(t)|dµ(t) <∞.

A bound for µ is an element κ ∈ {−∞} ∪ R such that (ǫ−λ)λ>κ ⊂ L1
µ(R+),

where ǫ−λ(t) := e−λt for t ∈ R+.
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For two Banach spaces X and Y , we denote by B(X,Y ) the Banach space

of bounded linear operators from X to Y . Put B(X) := B(X,X). Recently,

W. Chojnacki has established the following result.

Theorem 0.1 ([5], Theorem 1.2): Let µ be a non-negative Borel measure on

R+ with bound κ, X a Banach space, and r : (κ,∞) → X a function. Then the

following conditions are equivalent:

(i) There exists T ∈ B(L1
µ(R+), X) such that r(λ) = T (ǫ−λ) for λ > κ.

(ii) The function r belongs to C(∞)((κ,∞), X) and satisfies

‖r‖W,µ,κ := sup
{ ‖r(n)(λ)‖
‖tne−λt‖µ

: n ∈ N ∪ {0}, λ ∈ (κ,∞)
}

<∞.

Moreover, if there exists T as in (i), then T is unique and ‖T ‖ = ‖r‖W,µ,κ.

Particularly interesting applications of the above theorem arise when one

considers spaces L1
µ(R+) endowed with an algebraic structure. Let ω : R+ → R+

be a weight function, i.e., a continuous function such that ω(s+ t) ≤ Cω(s)ω(t)

for s, t ≥ 0 for a constant 0 < C <∞. Then there exists κ ∈ R and M > 0 such

that ω(t) ≤ Meκt for t > 0. Moreover, the Lebesgue space (L1
ω(R+), ‖ ‖ω) is

a Banach algebra with respect to the convolution ∗ defined by

f ∗ g(t) :=

∫ t

0

f(t− s)g(s)ds, f, g ∈ L1
ω(R+),

and the norm given by

‖f‖ω :=

∫ ∞

0

|f(t)|ω(t)dt <∞, f ∈ L1
ω(R+).

We denote this algebra by L1
ω(R+, ∗) (in particular, L1(R+, ∗) for ω(t) = 1).

Let A be a Banach algebra. A continuous function r : (κ,∞) → A is a

pseudo-resolvent if the equation

r(λ) − r(µ) = (µ− λ)r(λ)r(µ)

holds for λ, µ > κ. If (ǫ−λ)λ>κ ⊂ L1
ω(R+), then (ǫ−λ)λ>κ is a pseudo-resolvent

in L1
ω(R+, ∗).

J. Kisyński was the first one to notice a connection between algebra homo-

morphisms (in particular representations) and pseudo-resolvents, see [3] and

[9]. The following theorem characterizes certain classes of pseudo-resolvents

and shows that (ǫ−λ)λ>κ is a canonical pseudo-resolvent for these classes.
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Theorem 0.2 ([5] Theorem 5.1): Let A be a Banach algebra, ω a weight func-

tion on R+ with bound κ, and r : (κ,∞) → A, λ 7→ r(λ) a pseudo-resolvent.

Then the following conditions are equivalent:

(i) There exists a bounded algebra homomorphism T ∈ B(L1
ω(R+),A) such

that r(λ) = T (ǫ−λ) for λ > κ.

(ii) The function r satisfies the Hille–Yosida condition

‖r‖W,ω,κ = sup
{n! ‖rn+1(λ)‖

‖tne−λt‖ω
: n ∈ N ∪ {0}, λ ∈ (κ,∞)

}

<∞.

Moreover, if there exists T as in (i), then T is unique and ‖T ‖ =

‖r‖W,ω,κ.

Kisyński’s point of view allows generalizations of the Trotter–Kato theorem

and has interesting applications in the generation of one-parameter and inte-

grated semigroups. In fact, a first version of Theorem 0.1 was derived directly

from the Hille–Yosida theorem in [3].

In this paper we consider the cosine convolution product ∗c in the Banach

space L1
ω(R+) for certain weight functions ω, see Section 1. We describe the

character space of the Banach algebra L1
ω(R+, ∗c) and show that its multiplier

algebra Mul(L1
ω(R+, ∗c)) is isomorphic to Mω(R+, ∗c) (Theorem 2.6). Here

Mω(R+) is the space of all Borel measures on R+ such that

‖µ‖ω :=

∫

R+

ω(t)d|µ|(t) <∞,

where |µ| denotes the total variation of µ.

In the third section we prove a variant of Kisyński’s theorem for algebra homo-

morphisms from L1
ω(R+, ∗c) (Theorem 3.1). Following similar ideas to those of

the case L1
ω(R+, ∗) in [12], we consider in Section 4 integrated cosine functions,

fractional Banach algebras T (α)
+ (ωα, ∗c) (which are contained in L1

ω(R+, ∗c)) and

uniformly bounded limits of fractional homomorphisms, in order to characterize

algebra homomorphisms from L1
ω(R+, ∗c) into a Banach algebra A (Theorem

4.8).

In the last section we prove a generalization of the generation theorem for

cosine functions on a Banach space (Theorem 5.3). The generation theorem for

cosine functions has been established by M. Sova in [17] and G. Da Prato and

E. Giusti in [7].

Our approach is closer to that taken in a paper of A. Bobrowski in [2]. Bo-

browski’s paper exploits the subalgebra L1
e,Ω(R) of even functions in the Banach
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algebra L1
Ω(R), where Ω : R → R+ is a symmetric weight function, the norm is

defined by

‖F‖Ω :=

∫ ∞

−∞
|F (t)|Ω(t)dt <∞, F ∈ L1

Ω(R),

and the convolution product ∗ given by

F ∗G(t) :=

∫ ∞

−∞
F (s− t)G(s)ds, F,G ∈ L1

Ω(R).

Although L1
e,Ω(R) is isomorphic to L1

ω(R+, ∗c) with ω the restriction of Ω to R+,

we prefer to make use of the former rather than the latter. We work directly

with the structure of R+ without considering R+ inside of R. Both papers share

a common spirit and some similar results are obtained after different starting

points (compare Theorem 3.1 and [2, Proposition 3.1]).

Notation: For z ∈ C, ℜz denotes the real part of z and ℑz denotes its imaginary

part. Let X be a Banach space and T a linear (bounded or unbounded) operator

on X . Let ρ(T ) denote the resolvent set of T and (λ − T )−1 the resolvent

operator for λ ∈ ρ(T ).

1. The Banach algebra L1
ω(R+, ∗c)

In this section we consider in detail the Banach algebra L1
ω(R+, ∗c): we show

that it has bounded approximate identities and its character space may be

identified with a half strip of complex numbers.

Definition 1.1: A continuous map 0 6= ω : R+ → R+ is an extendible weight

function if it satisfies

ω(t+ s) ≤ Cω(t)ω(s), ω(t− s) ≤ Cω(t)ω(s), 0 ≤ s ≤ t,

for some constant C > 0. The infimum of such constants is called the growth

constant of ω.

Note that ω : R+ → R is an extendible weight function if and only if the

function Ω : R → R+ defined by

(1.1) Ω(t) :=







ω(t), t ≥ 0,

ω(−t), t ≤ 0,

is a weight function on R. Examples of extendible weight functions are

ω(t) = eκt; ω(t) = (1 + t)γ and ω(t) = eκtγ

with κ, γ, t ≥ 0.
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The proof of the following lemma is straightforward.

Lemma 1.2: Let ω be an extendible weight function.

(i) Then ω(t) 6= 0 holds for any t ≥ 0.

(ii) There exists M > 0 such that ω(t) ≥M for any t ≥ 0.

Define a convolution product ◦ in the Banach space L1
ω(R+) by

f ◦ g(t) :=

∫ ∞

t

f(s− t)g(s)ds,

for t ≥ 0 and f, g ∈ L1
ω(R+). It is easy to check that f ◦g ∈ L1

ω(R+), the product

◦ is non-commutative (see Example 1) and ‖f ◦ g‖ω ≤ ‖f‖ω‖g‖ω. Products ∗
and ◦ are dual in the sense that

(1.2)

∫ ∞

0

h(t)(f ∗ g)(t)dt =

∫ ∞

0

f(t)(g ◦ h)(t)dt,

for f, g ∈ L1
ω(R+) and h ∈ L∞

ω (R+), where the Lebesgue space L∞
ω (R+) is the

dual Banach space of L1
ω(R+) given by

L∞
ω (R+) := {f : R

+ → C |ω(t)−1|f(t)| is bounded for almost every t ≥ 0}.

Then the cosine convolution product ∗c is defined by

f ∗c g :=
1

2
(f ∗ g + f ◦ g + g ◦ f) , f, g ∈ L1

ω(R+),

see for example [16].

Proposition 1.3: Let ω be an extendible weight function on R+ with growth

constant C and f, g ∈ L1
ω(R+). Then:

(i) ‖ |f | ◦ |g| + |g| ◦ |f | ‖ω ≤ C‖f‖ω‖g‖ω.

(ii) ‖f ∗c g‖ω ≤ C‖f‖ω‖g‖ω.

Proof. First we use definitions of the cosine convolution product and extendible

weight functions and then we apply the Fubini theorem.

Let L1
ω(R+, ∗c) denote the Banach algebra which results from providing

L1
ω(R+) with the cosine convolution product ∗c. It is straightforward that

(1.3) f ∗c g(t) =
1

2
(F ∗G)(t), t ≥ 0,

where F,G : R → C are defined by F (t) := f(|t|), G(t) := g(|t|) for t ∈ R,

F,G ∈ L1
Ω(R), and Ω is given by (1.1).
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The cosine convolution product ∗c has been considered by several authors,

see for example [16] and [18]; for ω(t) = eκt with κ ≥ 0 see [13]. However, the

algebraic structure of L1
ω(R+, ∗c) has not been studied in detail yet. Firstly we

check cosine convolution products of some known functions.

Example 1: Let ω : R+ → R be an extendible weight function with bound

κ ≥ 0. Then the exponential function ǫ−λ belongs to L1
ω(R+) for any ℜλ > κ,

and satisfies

ǫ−λ ◦ ǫ−ν =
1

λ+ ν
ǫ−ν, ǫ−λ ∗ ǫ−ν =

1

ν − λ
(ǫ−λ − ǫ−ν) ,

and

(1.4) ǫ−λ ∗c ǫ−ν =
1

λ2 − ν2
(λǫ−ν − νǫ−λ) ,

whenever ℜλ,ℜν>κ. Moreover, the linear space spanned by the set {ǫ−ν : ν>κ}
is dense in L1

ω(R+), i.e., the set {ǫ−ν : ν > κ} is total in L1
ω(R+) ([5, Proposi-

tion 2.2]).

Example 2: Set ω(t) = (1 + t)γ with 0 ≤ γ < 1. The Poisson semigroup

(P z)ℜz>0 in L1
(1+|t|)γ (R) is given by

P z(t) :=
1

π

z

z2 + t2
, t ∈ R, ℜz > 0.

Put pz(t) := 2P z(t) for t ≥ 0. Then (pz)ℜz>0 ⊂ L1
(1+t)γ (R+, ∗c) and satisfies

the semigroup law, pz ∗c p
z′

= pz+z′
. This is due to the fact that

pz ∗c p
z′

= 2(P z ∗ P z′

) = 2P z+z′

= pz+z′

,

where we have used equality (1.3). The following estimate is readily seen:

‖ps‖(1+t)γ ≤ C(1 + sγ), s > 0.

Example 3: Let ω be an extendible weight function such that ω(t) ≤Meκt for

t ≥ 0 and κ > 0. Let Ω be as in (1.1). The Gaussian semigroup (Gz)ℜz>0 in

L1
Ω(R) is defined by

Gz(t) := 1
√

4πze−t2/4z , t ∈ R, ℜz > 0.

Define gz(t) := 2Gz(t) for t ≥ 0. Then (gz)ℜz>0 ⊂ L1
ω(R+, ∗c) and the following

semigroup law holds,

gz ∗c g
z′

= gz+z′

, ℜz,ℜz′ > 0.



Vol. 165, 2008 ALGEBRA HOMOMORPHISMS 259

Moreover,

‖gz‖ω ≤M
(
|z|/(ℜz)

)1/2
eκ2|z|2/ℜz , ℜz > 0.

Proposition 1.4: Let ω be an extendible weight function on R+. The Banach

algebra L1
ω(R+, ∗c) has a bounded approximate unit.

Proof. By Example 3, (gz)ℜz>0 ⊂ L1
ω(R+, ∗c) and ‖gs‖ω ≤ C′ for s ∈ (0, 1).

We have to check that gs ∗c f → f for f ∈ L1
ω(R+, ∗c) when s → 0+. Let Ω be

given by equation (1.1) and put F (t) := f(|t|) for t ∈ R. Then

‖gs ∗c f − f‖ω =

∫ ∞

0

|Gs ∗ F (t) − F (t)|ω(t)dt =
1

2
‖Gs ∗ F − F‖Ω → 0,

where we have used the fact that (Gs)0<s<1 is a bounded approximate unit on

L1
Ω(R).

For ω an extendible weight function, let

σω := lim
t→∞

logω(t)/t = inf
t>1

logω(t)/t.

By the assertion (ii) of Lemma 1.2, the inequality σω ≥ 0 holds. It is well-

known that the Banach algebra L1
ω(R+, ∗) is semisimple, its character space

△(L1
ω(R+, ∗)) is homeomorphic to the half plane Π−σω

defined as

Π−σω
:= {z ∈ C : ℜz ≥ −σω},

and the Gelfand transform is the Laplace transform L : L1
ω(R+, ∗c) → C0(Π−σω

)

given by

L(f)(z) =

∫ ∞

0

f(t)e−ztdt, z ∈ Π−σω
;

see these results, for example, in [6, Theorem 4.7.27].

Now we come back to the Banach algebra L1
Ω(R) defined in the introduction.

It is semisimple, its character space △(L1
Ω(R)) is homeomorphic to the strip

Π−σω ,σω
:= {z ∈ C : − σω ≤ ℜz ≤ σω},

and the Gelfand transform is the bilateral Laplace transform L : L1
Ω(R) →

C0(Π−σω ,σω
) defined as

L(F )(z) =

∫ ∞

−∞
F (t)e−ztdt, z ∈ Π−σω ,σω

,

see [6, Theorem 4.7.33].
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Theorem 1.5: Let ω be an extendible weight function. Then L1
ω(R+, ∗c) is

a semisimple Banach algebra and its character space △(L1
ω(R+, ∗c)) can be

identified with the half strip Π
+

−σω ,σω
where

Π
+

−σω ,σω
:= {z ∈ C : − σω ≤ ℜz ≤ σω ;ℑz ≥ 0}.

The Gelfand transform is given by the cosine transform

C : L1
ω(R+,∗c) → C0(Π

+

−σω ,σω
),

thus

C(f)(z) :=

∫ ∞

0

f(t) cosh(zt)dt, z ∈ Π
+

−σω ,σω
.

Proof. If κ > σω, then ω(t) ≤ Ceκt for t ≥ 0, and (ǫ−λ)ℜλ>κ ⊂ L1
ω(R+). Take

χ ∈ △(L1
ω(R+, ∗)) and define

g(λ) := χ(ǫ−λ), ℜλ > κ.

Note that g 6= 0: if g = 0 then we use the fact that the set (ǫ−λ)ℜλ>κ is total

on L1
ω(R+) to conclude that χ = 0, which is a contradiction. Using Example 1,

we have

(1.5) g(λ)g(ν) =
1

λ2 − ν2
(λg(ν) − νg(λ)), ℜλ,ℜν > κ.

Since g 6= 0, it follows that g(κ+ 1) 6= 0 (otherwise, using the equality (1.5) we

conclude that g = 0). Taking ν = κ+ 1 and z := κ+1
g(κ+1) − (κ+ 1)2, we obtain

from the equality (1.5) that

g(λ) = λ/(λ2 + z), ℜλ > κ.

Take now z = −u2 with u ∈ C. Since the character χ is continuous, we see that

|g(λ)| =

∣
∣
∣
∣

λ

λ2 − u2

∣
∣
∣
∣
=

|λ|
|λ− u|

1

|λ+ u| ≤ ‖χ‖ ‖ǫ−λ‖ω ≤ ‖χ‖
ℜλ− κ

,

for ℜλ > κ. Now suppose that |ℜu| > κ. Then we take λ = u or λ = −u to ob-

tain a contradiction with the above inequalities. We conclude that −κ ≤ ℜu ≤ κ

and −σω ≤ ℜu ≤ σω. Moreover, we have

χ(ǫ−λ) =
λ

λ2 − u2
=

∫ ∞

0

ǫ−λ(t) cosh(ut)dt,

for ℜλ > σω . Since the set (ǫ−λ)ℜλ>κ is total on L1
ω(R+), we obtain

χ(f) =

∫ ∞

0

f(t) cosh(ut)dt = C(f)(u), f ∈ L1
ω(R+, ∗c).
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Note that C(f)(u) = C(f)(−u) for u ∈ Π−σω ,σω
. In conclusion, given χ ∈

△(L1
ω(R+, ∗)) there exists u ∈ Π

+

−σω ,σω
such that

χ(f) = C(f)(u), f ∈ L1
ω(R+, ∗c).

Conversely, it is readily seen that f 7→ C(f)(u) is a character on L1
ω(R+, ∗c)

with u ∈ Π
+

−σω ,σω
, see similar ideas about cosine transforms in [13]. Thus the

character space △(L1
ω(R+, ∗c)) can be identified with the set Π

+

−σω ,σω
.

In order to show that L1
ω(R+, ∗c) is a semisimple Banach algebra, it is enough

to check that C : L1
ω(R+, ∗c) → C0(Π

+

−σω ,σω
) is injective, see for example [6,

Corollary 2.3.26]. Take f ∈ L1
ω(R+, ∗c) such that C(f) = 0. Then

0 = C(f)(u) =
1

2

∫ ∞

−∞
F (t)e−utdt =

1

2
L(F )(u), u ∈ Π−σω,σω

,

where F (t) := f(|t|) for t ≥ 0. By the analytic continuation principle, we have

L(F )(u) = 0 for every u ∈ Π−σω ,σω
. Since L1

Ω(R) is semisimple, it follows that

F = 0 and f = 0.

2. The Banach algebra Mul(L1
ω(R+, ∗c))

For a commutative Banach algebra A, let Mul(A) denote the subspace of

bounded linear operators on A, T : A → A, such that

T (ab) = aT (b), a, b ∈ A.

The space Mul(A) is a Banach algebra with respect to the composition and the

operator norm. It is usually called the multiplier algebra of A.

In the case that ω and Ω are weight functions on R+ and R respectively, the

multiplier algebras of L1
ω(R+, ∗) and L1

Ω(R) may be identified with the space of

Borel measures on R+ and R of total variation,

Mul(L1
ω(R+, ∗)) ∼= Mω(R+, ∗), Mul(L1

Ω(R)) ∼= MΩ(R),

where ∼= means “isomorphic” as Banach algebras, see for example [4] and [6].

We remind that the convolution product µ ∗ ν of two measures µ, ν ∈Mω(R+)

is defined by

(µ ∗ ν)(A) :=

∫

R+

µ(A⊖ t)dν(t),
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where A⊖ t = {s ∈ R+ : s = a− t for some a ∈ A} for a Borel set A on R+ and

µ ∗ ν ∈Mω(R+), see for example [4]. In this section we show that

Mul(L1
ω(R+, ∗c)) ∼= Mω(R+, ∗c).

Let Cb,ω(R+) be the space of all continuous functions f on R+ such that there

exists M > 0 with

|f(t)| ≤Mω(t) for all t ≥ 0,

and C0,ω be the space of all continuous functions f on R+ for which

lim
t→∞

f(t)/ω(t) = 0.

Endowed with the norm

‖f‖∞,ω := sup{|f(t)|/ω(t) : t ≥ 0},

Cb,ω(R+) and C0,ω(R+) are Banach spaces. It is well-known that the topological

dual space of C0,ω(R+), (C0,ω(R+))′, is isomorphic toMω(R+). In fact, for every

T ∈ (C0,ω(R+))′ there exists a unique µ ∈Mω(R+) such that

T (f) =

∫ ∞

0

f(t)dµ(t), f ∈ C0,ω(R+),

see [4]. Let µ ∈Mω(R+) and f ∈ L1
ω(R+). Then µ ∗ f ∈ L1

ω(R+) where

µ ∗ f(t) :=

∫ t

0

f(t− s)dµ(s), t ∈ R
+,

and ‖µ ∗ f‖ω ≤ C‖µ‖ω‖f‖ω. We now consider other convolution products.

Definition 2.1: Let µ ∈Mω(R+) and f ∈ L1
ω(R+, ∗c). We define f ◦µ, µ ◦ f and

µ ∗c f by

f ◦ µ(t) :=

∫ ∞

t

f(t− s)dµ(s), µ ◦ f(t) :=

∫ ∞

0

f(s+ t)dµ(s),

µ ∗c f(t) :=
1

2
(µ ∗ f + µ ◦ f + f ◦ µ) (t),

for t ≥ 0.

Note that f ∗c δ0 = f where δ0 is the Dirac measure on 0 and f ∈ L1
ω(R+, ∗c).

The following proposition is readily established.

Proposition 2.2: Let ω be an extendible weight function on R+ with growth

constant C, µ ∈Mω(R+) and f, g ∈ L1
ω(R+). Then:

(i) f ◦ µ, µ ◦ f, µ ∗c f ∈ L1
ω(R+);
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(ii) µ ∗c (f ∗c g) = f ∗c (µ ∗c g);

(iii) ‖ µ ◦ f + f ◦ µ‖ω ≤ C‖µ‖ω‖f‖ω;

(iv) ‖µ ∗c f‖ω ≤ C‖µ‖ω‖f‖ω.

The next lemma is needed in order to prove the main result of this section.

Lemma 2.3: Let ω be an extendible weight function on R
+, h ∈ C0,ω(R+) and

f, g ∈ L1
ω(R+). Then:

(i) h ∗ f, h ◦ f, f ◦ h, h ∗c f ∈ C0,ω(R+);

(ii)
∫ ∞
0
h(t)(f ∗c g)(t)dt =

∫ ∞
0
f(t)(h ∗c g)(t)dt.

Proof. (i) It is clear that functions h ∗ f, h ◦ f, f ◦ h, h ∗c f are continuous.

Moreover, we use the property that ω(t− s) ≤ Cω(t)ω(s) to prove that

|(h ∗ f)(t)| ≤
∫ t

0

|h(t− s)| |f(s)|ds = Cω(t)

∫ t

0

|h(t− s)|
ω(t− s)

ω(s)|f(s)|ds,

for t ≥ 0 and h ∗ f ∈ C0,ω(R+); in a similar way we prove that h ◦ f, f ◦ h ∈
C0,ω(R+) and so h ∗c f ∈ C0,ω(R+).

By part (i) and Fubini’s theorem, we obtain
∫ ∞

0

h(t)(f ◦ g)(t)dt =

∫ ∞

0

f(t)(h ◦ g)(t)dt,
∫ ∞

0

h(t)(g ◦ f)(t)dt =

∫ ∞

0

f(t)(g ∗ h)(t)dt.

With these two equalities and (1.2) we conclude the proof of (ii).

Definition 2.4: Let A be a Borel set on R+ and t ∈ R+. We define the Borel

set t⊕A as

t⊕A := {s ∈ R
+ : s = t+ a for some a ∈ A}.

Given µ, ν ∈Mω(R+), define µ ◦ ν, µ ∗c ν ∈Mω(R+) by

µ ◦ ν(A) :=

∫

R+

ν(t⊕A)dµ(t), µ ∗c ν :=
1

2
(µ ∗ ν + µ ◦ ν + ν ◦ µ).

The proof of the following proposition is straightforward.

Proposition 2.5: Let ω be an extendible weight function on R+ with growth

constant C, f ∈ L1
ω(R+) and µ, ν ∈Mω(R+). Then:

(i) µ ◦ ν, µ ∗c ν ∈Mω(R+);

(ii) ‖µ ∗c ν‖ω ≤ C‖µ‖ω‖ν‖ω;

(iii) (µ ∗c ν) ∗c f = µ ∗c (ν ∗c f).
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Let ω be an extendible weight function on R+ with growth constant C.

Then, when endowed with ∗c, the Banach space Mω(R+) is in fact a

Banach algebra. We denote it by Mω(R+, ∗c). Let us define the map

T : Mω(R+, ∗c) →Mul(L1
ω(R+, ∗c)), µ 7→ Tµ, by

Tµ(f) := µ ∗c f, f ∈ L1
ω(R+, ∗c).

Since ‖µ∗cf‖ω ≤ C‖µ‖ω‖f‖ω (Proposition 2.2 (iv)) and µ∗c(f∗cg) = f∗c(µ∗cg)

for f, g ∈ L1
ω(R+, ∗c) (Proposition 2.2 (ii)), it follows that Tµ is a multiplier on

L1
ω(R+, ∗c), ‖Tµ‖ ≤ C‖µ‖ω and ‖T ‖ ≤ C. Moreover, using Proposition 2.5 (iii),

the map T is an algebra homomorphism: if µ, ν ∈ Mω(R+) and f ∈ L1
ω(R+),

then

Tµ∗cν(f) = (µ ∗c ν) ∗c f = µ ∗c (ν ∗c f) = Tµ(Tν(f)).

Theorem 2.6: The map T is a bounded algebra isomorphism from Mω(R+, ∗c)

onto Mul(L1
ω(R+, ∗c)).

Proof. It is enough to show that each S ∈ Mul(L1
ω(R+, ∗c)) is equal to Tµ for

some µ ∈Mω(R+) such that ‖µ‖ω ≤M‖S‖ for some M > 0.

Since L1
ω(R+, ∗c) has a bounded approximate identity (Proposition 1.4), for

each S ∈Mul(L1
ω(R+, ∗c)) there exists a net {sβ}β∈B ⊂ L1

ω(R+, ∗c) such that

(2.1) S(f) = lim
β∈B

(sβ ∗c f), f ∈ L1
ω(R+, ∗c),

and supβ∈B ‖sβ‖ω ≤M‖S‖ (cf. [4, Proposition 2.1]).

Note that {sβ}β∈B ⊂ (C0,ω(R+))′ and by the relative weak* compactness of

bounded sets in (C0,ω(R+))′, there exists µ ∈Mω(R+) and a subnet (which we

write in the same way), {sβ}β∈B, such that

(2.2) lim
β∈B

∫ ∞

0

g(t)sβ(t)dt =

∫ ∞

0

g(t)dµ(t), g ∈ C0,ω(R+),

and ‖µ‖ ≤M‖S‖. Take f ∈ L1
ω(R+) and ψ∈ C0,ω(R+). Then ψ∗cf ∈ C0,ω(R+)

by assertion (i) of Lemma 2.3, and
∫ ∞

0

(ψ ∗c f)(t)sβ(t)dt =

∫ ∞

0

ψ(t)(sβ ∗c f)(t)dt,

by assertion (ii) of Lemma 2.3. Using the same ideas, it is easy to check that
∫ ∞

0

(ψ ∗c f)(t)dµ(t) =

∫ ∞

0

ψ(t)(µ ∗c f)(t)dt.
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Now we can write (2.2) as
∫ ∞

0

ψ(t)(µ ∗c f)(t)dt = lim
β∈B

∫ ∞

0

ψ(t)(sβ ∗c f)(t)dt =

∫ ∞

0

ψ(t)S(f)(t)dt

where we apply (2.1). Since ψ is an arbitrary element of C0,ω(R+), we have

S(f) = f ∗c µ.

Remark: The above proof was inspired by the proof of [4, Theorem 3.2]. In

fact, Chojnacki’s theorem is an adaptation of a result of J. G. Wendel on group

algebras, see more comments and details in [4].

3. A variant of Kisyński theorem on L1
ω(R+, ∗c)

Let ω be an extendible weight function with bound κ, A a commutative Ba-

nach algebra and r : (κ,∞) → A a function. By Theorem 0.1, there ex-

ists T : L1
ω(R+) → A such that r(λ) = T (ǫ−λ) for λ > κ if and only if

r ∈ C(∞)((κ,∞),A) and

‖r‖W,ω,κ <∞.

Next we prove a result similar to Theorem 0.2 for the algebra L1
ω(R+, ∗c).

For ω(t) = 1 this results appears in [2, Proposition 5.1].

Theorem 3.1: Let A be a Banach algebra, ω be an extendible weight function

on R+ with bound κ ≥ 0, r ∈ C(∞)((κ,∞),A) such that

‖r‖W,ω,κ <∞.

Then the following conditions are equivalent:

(i) The bounded homomorphism T : L1
ω(R+) → A such that r(λ) = T (ǫ−λ)

for λ > κ is an algebra homomorphism T : L1
ω(R+, ∗c) → A.

(ii) The function (r(
√
λ)/

√
λ)λ>κ2 is a pseudo-resolvent on A.

Proof. We define R(λ) := r(
√
λ)/

√
λ for λ > κ2. (i) ⇒ (ii) If λ, ν > κ2, then

R(λ)R(ν) =
1√
λ
√
ν
T (ǫ−

√
λ)T (ǫ−√

ν) =
1√
λ
√
ν
T (ǫ−

√
λ ∗c ǫ−√

ν)

=
1√
λ
√
ν
T

( 1

λ− ν

(√
λǫ−√

ν −
√
νǫ−

√
λ

))

=
1

λ− ν

( 1√
ν
T (ǫ−√

ν) − 1√
λ
T (ǫ−

√
λ)

)

=
1

λ− ν
(R(ν) −R(λ)) ,

where we have used the equality (1.4).
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(ii) ⇒ (i) Since the linear space spanned by the set {ǫ−ν : ν > κ} is dense

in L1
ω(R+) ([5, Proposition 2.2]) and T is linear and bounded, it is enough to

check that

T (ǫ−λ ∗c ǫ−ν) = T (ǫ−λ)T (ǫ−ν),

for λ, ν > κ. Since (R(λ))λ>κ2 is a pseudo-resolvent, we have

T (ǫ−λ)T (ǫ−ν) = λµR(λ2)R(ν2) =
λν

λ2 − ν2

(
R(ν2) −R(λ2)

)

=
1

λ2 − ν2
(λr(ν) − νr(λ)) = T (ǫ−λ ∗c ǫ−ν),

where we have used again the equality (1.4) for λ, ν > κ.

In Example 3, Section 1, we defined the Gaussian semigroup in L1
ω(R+, ∗c).

We now consider the Gaussian transform G : L1
ωg

(R+, ∗) → L1
ω(R+, ∗c) given

by

G(f)(s) :=

∫ ∞

0

f(t)gt(s)dt, s ∈ R
+, f ∈ L1

ωg
(R+, ∗),

where ωg(t) := ‖gt‖ω for t ≥ 0. Then

(3.1) G(ǫ−λ) =
1√
λ
ǫ−

√
λ, λ > κ2,

(cf. [15]) and G is an algebra homomorphism with ‖G‖ ≤ 1.

Let X be a Banach space and T ∈ B(L1
ω(R+), X). The Gaussian transform

allows one to define TG ∈ B(L1
ωg

(R+), X) by

TG(f) := T (G(f)), f ∈ L1
ωg

(R+).

Corollary 3.2: Let A be a Banach algebra, ω an extendible weight function

on R+ with bound κ ≥ 0 and r ∈ C(∞)((κ,∞),A) such that

‖r‖W,ω,κ <∞.

Then the following conditions are equivalent:

(i) The bounded homomorphism T : L1
ω(R+) → A is an algebra homomor-

phism, T : L1
ω(R+, ∗c) → A, with

r(λ) = T (ǫ−λ), λ > κ.

(ii) The bounded homomorphism TG : L1
ωg

(R+) → A is an algebra homo-

morphism, TG : L1
ωg

(R+, ∗) → A, such that

TG(ǫ−λ) =
r(
√
λ)√
λ

, λ > κ2.
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(iii) The function (r(
√
λ)/

√
λ)λ>κ2 is a pseudo-resolvent on A.

Proof. The implication (i)⇒(ii) follows from the identities

TG(f ∗ g) = T (G(f ∗ g)) = T (G(f) ∗c G(g)) = TG(f)TG(g), f, g ∈ L1
ωg

(R+, ∗).

The implication (ii)⇒(iii) is part of Theorem 0.2 and (iii)⇒(i) is part of Theo-

rem 3.1.

4. Algebra homomorphims and integrated cosine functions

In this section we characterize bounded algebra homomorphims from L1
ω(R+, ∗c)

in terms of integrated cosine functions (Theorem 4.8). To show this we use

certain fractional Banach algebras T (α)
+ (τα, ∗c) which have been introduced in

[11]. We also need to give an extension of a result of [12] about uniformly

bounded limits of fractional homomorphisms (Theorem 4.6).

Let D+ denote the set of test functions of compact support in [0,∞), and S+

denote the Schwartz class on [0,∞), i.e., functions that are infinitely differen-

tiable and satisfy

sup
t≥0

∣
∣
∣
∣
tm

dn

dtn
f(t)

∣
∣
∣
∣
<∞,

for any m,n ∈ N ∪ {0}.
Given f ∈ S+, the Weyl fractional integral of f of order α > 0 is defined

by

W−α
+ f(u) :=

1

Γ(α)

∫ ∞

u

(t− u)α−1f(t)dt, u ≥ 0.

This operator W−α
+ : S+ → S+ is one to one, its inverse, Wα

+ , is the Weyl

fractional derivative of order α and

Wα
+f(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ ∞

t

(s− t)n−α−1f(s)ds, t ≥ 0,

holds with n = [α] + 1, see for example [14]. It is easy to check that Wα
+f =

(−1)αf (α) if α ∈ N. The semigroup law Wα+β
+ f = Wα

+(W β
+f) holds with α, β ∈

R, W 0
+ = Id, and Wα

+(fλ)(t) = λαWα
+(f)(λt) with λ > 0, if fλ(t) := f(λt) and

f ∈ S+ (cf. [14]).

Example 4: If λ > 0, then ǫ−λ ∈ S+ and

W−α
+ (ǫ−λ) = λ−αǫ−λ.
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Therefore, Wα
+ǫ−λ = λαǫ−λ for α ∈ R. We define functions (βn,λ)n∈N,λ>0 by

βn,λ(t) := tne−λt, t ≥ 0.

Note that βn,λ(t) = (−1)n(d/dλ)nǫ−λ(t) for t, λ > 0 and n ∈ N ∪ {0}. To give

the value of Wα
+(βn,λ) in Theorem 4.2, we show the following lemma.

Lemma 4.1: If α ∈ R and f ∈ S+, then

Wα
+(sf(s))(t) = tWα

+f(t) − αWα−1
+ f(t), t > 0.

Proof. The case α < 0 is shown in [14, p. 246]; if α > 0 we have

W−α
+ (sWα

+f(s) − αWα−1
+ f(s))(t) = tf(t) + αW−1

+ f(t) − αW−1
+ f(t) = tf(t)

with t > 0.

Polynomial solutions of the differential equation

zy′′(z) + (α+ 1 − z)y′(z) + ny(z) = 0,

with n = 0, 1, 2 . . . and α ∈ C, are called generalized Laguerre polynomials,

and are denoted by L
(α)
n . They satisfy a Rodrigues’ formula,

(4.1) L(α)
n (x) =

x−αex

n!

dn

dxn
(xn+αe−x),

see [10, p. 241], and we have

L(α)
n (x) =

n∑

m=0

(−1)m

(
n+ α

n−m

)
xm

m!
, x ∈ R,

where
(

n+α
n−m

)
= (α+m+1)n−m

(n−m)! and (α)n = α(α+ 1) · · · (α+ n− 1).

Generalized Laguerre polynomials satisfy several recurrence equalities, see

[10, p. 241], one of them being

(4.2) xL(α+1)
n (x) = (n+ α+ 1)L(α)

n (x) − (n+ 1)L
(α)
n+1(x), x ∈ R.

Theorem 4.2: Let α ∈ R, n ∈ N and λ > 0. Then

Wα
+(βn,λ)(t) = λα−ne−λt(−1)nn!L(α−n)

n (λt), t ≥ 0.

Proof. Note that it is enough to show that

L(α−n)
n (x) =

(−1)n

n!
exWα

+(tne−t)(x), x ≥ 0.
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We prove this by induction on n. Take α > 0; for n = 1 we apply Lemma 4.1

to get

Wα
+(te−t)(x) = xWα

+(e−t)(x) − αWα−1
+ (e−t)(x) = e−x(x− α) = −L(α−1)

1 (x).

Consider the case n+ 1. By Lemma 4.1 we obtain that

Wα
+(tn+1e−t)(x) = xWα

+(tne−t)(x) − αWα−1
+ (tne−t)(x), x ≥ 0,

and by the induction hypothesis,

Wα
+(tn+1e−t)(x) = e−xn!(−1)n

(

xL(α−n)
n (x) − αL

(α−1−n)
n+1 (x)

)

, x ≥ 0.

Then we apply the recurrence formula (4.2) to derive that

Wα
+(tn+1e−t)(x) = e−xn!(−1)n(−1)(n+ 1)L

(α−n−1)
n+1 (x)

= e−x(−1)n+1(n+ 1)!L
(α−(n+1))
n+1 (x) x ≥ 0.

The case α < 0 can be proved in a similar way.

In the remainder of this section we consider a continuous non-decreasing

weight ω : R+ → R+ with ω(0) 6= 0 and bound κ ≥ 0. Then ω is an extendible

weight due to the fact that

ω(t− s) ≤ ω(t) ≤ ω(t)
ω(s)

ω(0)
= Cω(t)ω(s), 0 ≤ s ≤ t.

Let τα(t) := tαω(t), α > 0 and let (Rθ
t )t>0 be the family of Riesz functions

given by

Rθ
t (s) :=

(t− s)θ

Γ(θ + 1)
χ(0,t)(s),

with t, s > 0 and θ > −1.

Theorem 4.3 ([11, Theorem 3]): Let α > 0. Then the expression

qτα
(f) :=

1

Γ(α+ 1)

∫ ∞

0

τα(t)|Wα
+f(t)|dt, f ∈ D+,

defines a norm on D+. We denote by T (α)
+ (τα) the Banach space obtained as

the completion of D+ in the norm qτα
. The following assertions hold:

(i) T (α)
+ (τα) →֒ T (α)

+ (tα) →֒ L1(R+) and T (α)
+ (τα) →֒ L1

ω(R+).

(ii) T (β)
+ (τβ) →֒ T (α)

+ (τα); in particular, T (β)
+ (tβ) →֒ T (α)

+ (tα).

(iii) Rν−1
t ∈ T (α)

+ (τα) with t > 0 and ν > α; and qτα
(Rν−1

t ) ≤ Cν,αt
ν−ατα(t)

for t > 0, where Cν,α > 0 is independent of t.
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Moreover, qτα
(f ∗c g) ≤ Cαqτα

(f)qτα
(g) for f, g ∈ D+, and Cα > 0 is inde-

pendent of f and g. We denote by T (α)
+ (τα, ∗c) the Banach algebra obtained as

the completion of D+ in the norm qτα
with the cosine convolution product ∗c.

Example 5: If λ > κ, then ǫ−λ ∈ T (α)
+ (τα) and

qτα
(ǫ−λ) ≤ λα/(λ− κ)α+1.

Since βn,λ = n! ǫ−λ ∗ · · · ∗ ǫ−λ
︸ ︷︷ ︸

n+1 times

for n ∈ N ∪ {0} and λ > 0, we obtain βn,λ ∈

T (α)
+ (τα) for n ∈ N ∪ {0} and λ > κ.

Example 6: Solutions of the Hermite differential equation

w′′(z) − 2zw′(z) + 2νw(z) = 0,

with ν ∈ C are called Hermite functions of order ν, and are denoted Hν . For

ν ∈ N, the functions Hν are polynomials known as Hermite polynomials. They

satisfy a Rodrigues’ formula

Hn(z) = (−1)nez2 dn

dzn
e−z2

.

Moreover, for ν ∈ R, some Hermite functions satisfy that

W ν
+(e−t2)(t) = e−t2Hν(t), t ∈ R,

and

(4.3) |Hν(z)| ≤ Cν(1 + |z|ν), ν > 0, ℜz > 0,

see for example [8, p. 344].

Proposition 4.4: Let (gz)ℜz>0 be the Gaussian semigroup. Then (gz)ℜz>0 ⊂
T (α)

+ (τα) and

qτα
(gz) ≤ Cαe

κ2|z|2/ℜz
(( |z|

ℜz
)α+1/2

+κα |z|3/2α+1/2

(ℜz)α+1/2
+κ2α |z|3α+1/2

(ℜz)2α+1/2

)

, ℜz > 0,

where τα(t) ≤ Ctαeκt for κ, t ≥ 0.

Proof. Note that for α, z > 0,

Wα
+(gz)(t) =

1√
πz
Wα

+(e
−( r

2
√

z
)2

)(t) =
1

2α
√
πz(α+1)/2

Hα

( t

2
√
z

)

e−t2/(4z),
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for t > 0 and then for z ∈ C+, because of the analytic continuation principle.

Now we apply (4.3) to obtain

qτα
(gz) ≤ 1

2α
√
π|z|(α+1)/2

∫ ∞

0

|Hα(t/(2
√
z))|e−t2ℜz/4|z|2τα(t)dt

≤ Cα

|z|(α+1)/2

∫ ∞

0

(

1 +
tα

2α|z|α/2

)

e−t2ℜz/4|z|2tαeκtdt.

We change the variable u = t
√
ℜz/(2|z|)− (κ|z|)/

√
ℜz, and get

qτα
(gz) ≤ Cαe

κ2|z|2/ℜz
(( |z|

ℜz
)α+1/2

+ κα |z|3/2α+1/2

(ℜz)α+1/2
+ κ2α |z|3α+1/2

(ℜz)2α+1/2

)

,

for ℜz > 0.

Lemma 4.5: The function (κ,∞) → T (α)
+ (τα), λ 7→ ǫ−λ is infinitely differen-

tiable in the norm topology of T (α)
+ (τα) and

dnǫ−λ

dλn
= (−1)nβn,λ,

for each n ∈ N ∪ {0} and λ > κ.

Proof. Take λ > κ. Then

βn,λ(t) = (−1)n dn

dλn
ǫ−λ(t) = (−1)n

∫ ∞

0

dn

dλn

(

λe−λ2s
)

(λ)gs(t)ds, t ≥ 0,

where we use the equality (3.1). Note that
∫ ∞

0

∣
∣
∣
dn

dλn

(

λe−λ2s
)

(λ)
∣
∣
∣qτα

(gs)ds <∞,

by Proposition 4.4 and we obtain that

βn,λ = (−1)n

∫ ∞

0

dn

dλn

(

λe−λ2s
)

(λ)gsds = (−1)n dn

dλn
ǫ−λ,

in the norm topology of T (α)
+ (τα).

The next result is a generalization of [12, Theorem 3.1] concerning bounded

limits of fractional homomorphisms.

Theorem 4.6: Let X be a Banach space, ω a continuous non-decreasing weight

with ω(0) 6= 0 and bound κ ≥ 0; and τα(t) := tαω(t) for t ≥ 0 and α ≥ 0.

(i) For every bounded homomorphism T : L1
ω(R+) → X , there exists a

family of bounded homomorphisms Tα : T (α)
+ (τα) → X , α > 0, such

that ‖Tα‖ ≤ ‖T ‖ and Tα(ǫ−λ) = T (ǫ−λ) for each λ ∈ (κ,∞).
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(ii) Conversely, if for each α > 0 there exists a bounded homomorphism

Tα : T (α)
+ (τα) → X such that Tα(ǫ−λ) does not depend on α for each

λ ∈ (ω,∞) and lim supα→0+ ‖Tα‖ < ∞, then there exists a unique

bounded homomorphism T : L1
ω(R+) → X such that T (ǫ−λ) = Tα(ǫ−λ)

for each λ ∈ (κ,∞), α > 0 and ‖T ‖ ≤ lim supα→0+ ‖Tα‖.

Proof. The first part follows from T (α)
+ (τα) →֒ L1

ω(R+), see part (i) of Theo-

rem 4.3. To prove (ii), we use Theorem 0.1. We define r(λ) := Tα(ǫ−λ) for

each λ > κ. The family (r(λ))λ∈(ω,∞) is well-defined. We apply Lemma 4.5 to

obtain r(n)(λ) = (−1)nTα(βn,λ) and Theorem 4.2 to conclude that

‖r(n)(λ)‖ ≤ ‖Tα‖ qτα
(βn,λ) =

‖Tα‖n!

Γ(α+ 1)
λα−n

∫ ∞

0

e−λt|L(α−n)
n (λt)|tαω(t)dt,

for each n ∈ N, λ ∈ (κ,∞) and α > 0. Since

lim
α→0+

L(α−n)
n (λt) = (−1)n(λt)n/n!,

we have

‖r(n)(λ)‖ ≤ lim sup
α→0+

‖Tα‖
∫ ∞

0

tne−λtω(t)dt = lim sup
α→0+

‖Tα‖ ‖βn,λ‖ω,

for each n ∈ N and λ ∈ (κ,∞). By Theorem 0.1 there exists a unique bounded

homomorphism T : L1
ω(R+) → X such that T (ǫ−λ) = r(λ) = Tα(ǫ−λ) for each

λ ∈ (κ,∞) and ‖T ‖ ≤ lim supα→0+ ‖Tα‖.

To finish the section we characterize bounded algebra homomorphisms from

L1
ω(R+, ∗c) into a Banach algebra A. The case of L1

ω(R+, ∗) has been considered

in detail in several papers ([3], [4, Theorem 3.3], [9, Section 10]). In our setting,

cosine functions need to be considered.

Definition 4.7: For any α > 0, an α-times integrated cosine function is a

continuous mapping cα( · ) : [0,∞) → A such that cα(0) = 0 and satisfying

2Γ(α)cα(t)cα(s) =

∫ t+s

t

(t+ s− r)α−1cα(r)dr −
∫ s

0

(t+ s− r)α−1cα(r)dr

+

∫ t

t−s

(r − t+ s)α−1cα(r)dr +

∫ s

0

(r + t− s)α−1cα(r)dr(4.4)

whenever t > s > 0.
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If (cα(t))t≥0 is an α-times integrated cosine function in A, then (cν(t))t≥0,

where

cν(t) :=
1

Γ(ν − α)

∫ t

0

(t− s)ν−α−1cα(s)ds, t ≥ 0,

is a ν-times integrated cosine function in A for every ν > α . The set of

Riesz functions (Rν−1
t )t≥0 is an example of ν-times integrated cosine function

in T (α)
+ (τα, ∗c) for ν > α ≥ 0, see [11].

The following result is inspired by [12, Theorem 4.2].

Theorem 4.8: Let A be a Banach algebra, ω a continuous non-decreasing

weight with ω(0) 6= 0 and bound κ ≥ 0. Let τα(t) := tαω(t) for t, α ≥ 0 and

r ∈ C(∞)((κ,∞),A) such that

M = sup
{ ‖r(k)(λ)‖
‖tke−λt‖ω

: k ∈ N ∪ {0}, λ ∈ (κ,∞)
}

.

Then the following conditions are equivalent:

(i) M <∞ and (r(
√
λ)/

√
λ)λ>κ2 is a pseudo-resolvent on A.

(ii) There exists a bounded algebra homomorphism T : L1
ω(R+, ∗c) → A

such that T (ǫ−λ) = r(λ) for each λ ∈ (κ,∞).

(iii) For any α > 0, there exists an α-times integrated cosine function

(cα(t))t≥0 in A such that ‖cα(t)‖ ≤ C
Γ(α+1) τα(t) for some constantC > 0

and every t ≥ 0, and r(λ) = λα
∫ ∞
0
e−λtcα(t)dt for λ > κ.

(iv) For any α > 0, there exists a bounded algebra homomorphism Tα :

T (α)
+ (τα, ∗c) → A such that Tα(ǫ−λ) = r(λ) for each λ ∈ (κ,∞) and

supα>0 ‖Tα‖ <∞.

Furthermore, if there exists a bounded algebra homomorphism

T : L1
ω(R+, ∗c) → A

such that T (ǫ−λ) = r(λ) for each λ ∈ (κ,∞), then it is unique, T (f) = Tα(f)

for f ∈ T (α)
+ (τα) and every α > 0 and

M = ‖T ‖ = sup
α>0

‖Tα‖ = inf
{

C : ‖cα(t)‖ ≤ Cτα(t)/Γ(α+ 1), t ≥ 0
}

.

Proof. (i) ⇔ (ii) is the content of Theorem 3.1. (ii) ⇒ (iii) Noting that, for

each t > 0, the Riesz function Rα−1
t is a member of L1

ω(R+, ∗c), we define

cα(t) := T (Rα−1
t ) for t > 0 and cα(0) := 0. Since (Rα−1

t )t>0 is an α-times

integrated cosine function in L1
ω(R+, ∗c), (cα(t))t≥0 is an α-times integrated
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cosine function in A and

‖cα(t)‖ ≤ ‖T ‖‖Rα−1
t ‖ω ≤ ‖T ‖ tα

Γ(α+ 1)
ω(t),

for t ≥ 0. By the continuity of T , we have

λα

∫ ∞

0

e−λtcα(t)dt = λαT
(∫ ∞

0

e−λtRα−1
t dt

)

= λαT (W−αǫ−λ)

= T (ǫ−λ) = r(λ)

for λ > ω. (iii) ⇒ (iv) We define Tα : T (α)
+ (τα, ∗c) → A by

Tα(f) :=

∫ ∞

0

Wα
+f(t)cα(t)dt, f ∈ D+.

Following the same arguments as in [11, Theorem 4], we prove that Tα is a

bounded algebra homomorphism with ‖Tα‖ ≤ C < ∞ for any α > 0. Since

ǫ−λ ∈ T (α)
+ (τα) for λ > κ and Wα

+(ǫ−λ) = λαǫ−λ, we have Tα(ǫ−λ) = r(λ) for

λ > κ.

The implication (iv) ⇒ (ii) follows from assertion (ii) of Theorem 4.6.

Finally, if there exists a bounded algebra homomorphism T : L1
ω(R+, ∗c) → A

satisfying T (ǫ−λ) = r(λ) for each λ ∈ (ω,∞), then T (α)
+ (τα) →֒ L1

ω(R+) and

T (f) = Tα(f) for f ∈ T (α)
+ (τα) and for all α > 0. Moreover, we have collected

in the proof the following inequalities,

‖T ‖ = M = sup
α>0

‖Tα‖ ≤ inf
{

C : ‖cα(t)‖ ≤ C
tαeωt

Γ(α+ 1)
, t ≥ 0

}

≤ ‖T ‖,

whence we get the equality.

5. Representations and the generation theorem for cosine functions

The main purpose in this section is to extend the Sova-Da Prato-Giusti theorem

on generation of cosine functions (Theorem 5.3). Our generalization allows

one to give a new proof of the classical generation theorem as a corollary of

the variant of Kisyński theorem on L1
ω(R+, ∗c) (Theorem 3.1). Moreover, we

may conjeture that the Sova-Da Prato-Giusti theorem and Theorem 3.1 are

equivalent, see [3].

Let A be a Banach algebra and X a Banach space. A bounded algebra

homomorphism from A into B(X) is called here a representation. Suppose

that A is commutative and has a bounded approximate identity {en}n∈N. Given
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a representation Φ : A → B(X), the regularity space RΦ is the closed linear

span of {Φ(a)x : a ∈ A, x ∈ X}, so that

RΦ = {x ∈ X : lim
n→∞

Φ(en)x = x}

(cf. [4]). By Cohen’s theorem, RΦ = {Φ(a)x : a ∈ A, x ∈ X} and there exists a

unique representation Φ̂ : Mul(A) → B(RΦ), called the extended represen-

tation of Φ, such that

Φ̂(Ta)x = Φ(a)x, x ∈ RΦ,

where Ta(b) := ab for a, b ∈ A. Moreover, ‖Φ‖ ≤ ‖Φ̂‖ ≤ (lim infn ‖en‖) ‖Φ‖, see

[4, Theorem 2.4].

Consider now the case A = L1
ω(R+, ∗c), where ω is an extendible weight

function and Mul(L1
ω(R+, ∗c)) ∼= Mω(R+, ∗c) (Theorem 2.6). Then any repre-

sentation Φ : L1
ω(R+, ∗c) → B(X) can be extended to Φ̂ : Mω(R+, ∗c) → B(RΦ).

The set of Dirac measures (δt)t≥0 plays an important role in relation to

L1
ω(R+, ∗): the family (δt)t≥0 is contained in Mω(R+, ∗); the semigroup prop-

erty δt ∗ δs = δt+s holds for t, s ≥ 0 and Tδt
f →t→0+ f on L1

ω(R+, ∗), where

Tδt
f(s) := δt ∗ f(s) = f(s − t) for s, t ≥ 0. Here we discuss the role of Dirac

measures (δt)t≥0 in connection with L1
ω(R+, ∗c). We start by recalling some

definitions and results about cosine functions which can be found in [1].

A map C( · ) : [0,∞) → B(X) satisfies the cosine functional equation if

2C(t)C(s) = C(t+ s) + C(s− t), s ≥ t ≥ 0,

and is a cosine function when, in addition, it is strongly continuous in [0,∞)

and C(0) = IX . An operator (A,D(A)) is the generator of a cosine function

(C(t))t≥0, when

D(A) = {x ∈ X : C( · )x ∈ C(2)([0,∞), X)}, Ax = C′′(0)x for x ∈ D(A).

The generator of a cosine function (A,D(A)) is densely defined. Also, a cosine

function is always exponentially bounded (i.e., there exist M,κ ≥ 0 such that

‖C(t)‖ ≤Meκt for t ≥ 0), and we have

λ(λ2 −A)−1x =

∫ ∞

0

e−λtC(t)xdt, λ > κ, x ∈ X.

It is readily seen that δt ◦ δs = δs−t if s ≥ t; δt ◦ δs = 0 if s < t and

(5.1) 2(δt ∗c δs) = δt+s + δs−t, s ≥ t ≥ 0.
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Lemma 5.1: The family of operators (Tδt
)t≥0 defined by

Tδt
(f) := δt ∗c f, t ≥ 0, f ∈ L1

ω(R+, ∗c),

is a cosine function on L1
ω(R+, ∗c).

Proof. We write C(t) := Tδt
and consider the map C : [0,∞) → B(L1

ω(R+, ∗c)).

This map C( · ) is well-defined (see Section 2) and the cosine equation holds from

the equality (5.1). We need to check that the map t 7→ C(t)f is continuous on

L1
ω(R+, ∗c). But this is a consequence of the equality

C(t)(f)(u) =
1

2

(
χ[t,∞)(u)f(u− t) + f(t+ u) + χ[0,t](u)f(t− u)

)
,

for t, u ≥ 0.

In the next result we consider representations of L1
ω(R+, ∗c) on X ; see

[4, Theorem 3.3] for the case L1
ω(R+, ∗).

Theorem 5.2: For a representation Φ : L1
ω(R+, ∗c) → B(X), let RΦ be the

regularity space of Φ and let Φ̂ : Mω(R+, ∗c) → B(RΦ) be the extended repre-

sentation of Φ. For each t ≥ 0, put

C(t) := Φ̂(Tδt
), t ≥ 0.

Then (C(t))t≥0 is a cosine function on RΦ such that ‖C(t)‖ ≤ ‖Φ̂‖ω(t) for

t ≥ 0, and

Φ(f)x =

∫ ∞

0

f(t)C(t)xdt,

for x ∈ RΦ and f ∈ L1
ω(R+, ∗c).

Proof. From Lemma 5.1, it is straightforward to check that (C(t))t≥0 is a cosine

function on RΦ and

‖C(t)‖ ≤ ‖Φ̂‖ ‖δt‖ω = ‖Φ̂‖ω(t), t ≥ 0.

Now we consider Φ : L1
ω(R+, ∗c) → B(RΦ) and define Ψ : L1

ω(R+, ∗c) → B(RΦ)

as

Ψ(f)x :=

∫ ∞

0

f(t)C(t)xdt,
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for x ∈ RΦ and f ∈ L1
ω(R+, ∗c). The map Ψ is a bounded algebra homomor-

phism ([13, Theorem 3.3]) and

Ψ(ǫ−λ)x =

∫ ∞

0

e−λtC(t)xdt =

∫ ∞

0

e−λtΦ̂(Tδt
)xdt = Φ̂

( ∫ ∞

0

e−λtTδt

)

x

= Φ̂(Tǫ−λ
)x = Φ(ǫ−λ)x,

for x ∈ RΦ and λ > κ, where κ is a bound of ω. Since the linear span of

(ǫ−λ)λ>κ is dense in L1
ω(R+, ∗c), we obtain that

Φ(f)x =

∫ ∞

0

f(t)C(t)xdt,

for x ∈ RΦ and f ∈ L1
ω(R+, ∗c).

Remark: In fact, it can be proved that

Φ̂(Tµ)x =

∫ ∞

0

C(t)xdµ(t), x ∈ RΦ, µ ∈Mω(R+, ∗c),

along the same lines as in [4, Theorem 3.3].

Let ω be an extendible weight with bound κ ≥ 0 and r : (κ,∞) → B(X) a

function such that

(5.2) r(λ)r(µ) =
1

λ2 − µ2
(λr(µ) − µr(λ)), λ, µ > κ.

We define the regularity space of r as

Rr := {x ∈ X : lim
λ→∞

λr(λ)x = x}.

It is clear that if r : (κ,∞) → B(X) satisfies (5.2), then R : (κ2,∞) → B(X)

given by

R(λ) := r(
√
λ)/

√
λ, λ > κ2,

is a pseudo-resolvent on B(X). Moreover, RR = Rr, where RR is the regularity

space of the pseudo-resolvent (R(λ))λ>κ2 defined by

RR := {x ∈ X : lim
λ→∞

λR(λ)x = x}.

If ‖r‖W,ω,κ < ∞, then there exists a representation φ : L1
ω(R+, ∗c) → B(X)

such that r(λ) = φ(ǫ−λ) for λ > κ (Theorem 3.1). It will be called the repre-

sentation associated with r. Since L1
ω(R+, ∗c) has a bounded approximate

identity (Proposition 1.4), we may consider the regularity space Rφ. It turns

out that

Rφ = Rr.



278 P. J. MIANA Isr. J. Math.

In particular, Rr is invariant for all φ(f) with f ∈ L1
ω(R+), and any element of

Rr can be represented as φ(f)x for some f ∈ L1
ω(R+) and x ∈ X .

Now we give the announced generalization of the Sova-Da Prato-Giusti the-

orem.

Theorem 5.3 (Generalized Sova-Da Prato-Giusti theorem): Let ω be an ex-

tendible weight with bound κ ≥ 0, X a Banach space and r : (κ,∞) → B(X) a

map such that

r(λ)r(µ) =
1

λ2 − µ2
(λr(µ) − µr(λ)), λ, µ > κ,

in B(X) with

‖r‖W,ω,κ <∞.

Let φ : L1
ω(R+, ∗c) → B(X) be the representation of L1

ω(R+, ∗c) associated with

r. Then there exists a unique cosine function (C(t))t≥0 on Rr such that

(5.3) C(t)φ(f)x = φ(Tδt
(f))x,

for t ≥ 0, f ∈ L1
ω(R+, ∗c) and x ∈ X . Moreover, the cosine function (C(t))t≥0

satisfies

r(λ)x =

∫ ∞

0

e−λtC(t)xdt,

for λ > κ, x ∈ Rr and ‖C(t)‖ ≤Mω(t) for t ≥ 0.

Proof. Applying Theorem 5.2 to the representation φ : L1
ω(R+, ∗c) → B(X) as-

sociated with r, we see that there exists a cosine function (C(t))t≥0 on Rφ(= Rr)

such that ‖C(t)‖ ≤Mω(t) for t ≥ 0. The cosine function (C(t))t≥0 satisfies

C(t)φ(f) = φ̂(Tδt
)φ̂(Tf) = φ̂(Tδt∗cf ) = φ(Tδt

(f)),

for t ≥ 0 and f ∈ L1
ω(R+, ∗c) and

r(λ)x = φ(ǫ−λ)x =

∫ ∞

0

e−λtC(t)xdt,

for x ∈ Rr and λ > κ. Finally, the uniqueness of (C(t))t≥0 follows from (5.3)

and the fact that every element of Rr can be represented as φ(f)x for some

f ∈ L1
ω(R+, ∗c) and x ∈ X .

Let R = (R(λ))λ>κ be a pseudo-resolvent on B(X). It is known that the

kernel and range of R(λ) are independent of λ, so we denote them by ker(R) and

Im(R) respectively. Note that (R(λ))λ>κ is the resolvent of a densely defined
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closed operator (A,D(A)), i.e. R(λ) = (λ − A)−1, if and only if ker(R) = {0}
and Im(R) = X .

We conclude the paper by deducing the Sova-Da Prato-Giusti theorem from

Theorem 5.3.

Theorem 5.4: Let (A,D(A)) be a densely defined operator on a Banach space

X . The following assertions are equivalent:

(i) (A,D(A)) generates a cosine function.

(ii) There exist κ,M ≥ 0 such that (κ2,∞) ⊂ ρ(A) and

1

n!

∣
∣
∣(λ− κ)n+1 d

n

dλn
(λ(λ2 −A)−1)

∣
∣
∣ ≤M,

for all λ > κ and n ∈ N ∪ {0}.

Proof. (i) ⇒ (ii) There exist κ ≥ 0 and M > 0 such that ‖C(t)‖ ≤Meκt. Take

ω(t) := eκt for t ≥ 0 and define Φ : L1
ω(R+, ∗c) → B(X) by

Φ(f)x :=

∫ ∞

0

f(t)C(t)xdt,

for x ∈ X and f ∈ L1
ω(R+, ∗c). Note that

Φ(ǫ−λ) = λ(λ2 −A)−1, λ > κ,

and ‖tne−λt‖ω = n!/(λ− κ)n+1 for n ∈ N ∪ {0} and λ > κ. Applying Theorem

0.1, we obtain
1

n!

∣
∣
∣(λ− κ)n+1 d

n

dλn
(λ(λ2 −A)−1)

∣
∣
∣ ≤M ′,

for all λ > κ and n ∈ N ∪ {0}.
(ii) ⇒ (i) Let r(λ) := λ(λ2 −A)−1 for λ > κ. Then

r(λ)r(µ) =
1

λ2 − µ2
(λr(µ) − µr(λ)), λ, µ > κ,

‖r‖W,ω,κ < ∞ with ω(t) = eκt for t ≥ 0. Then, applying Theorem 5.3, we

obtain a cosine family (C(t))t≥0 on Rr. Note that Rr = Im(R) = X (where

R(µ) = (µ−A)−1 for µ > κ2). It is easy to check that (A,D(A)) is the generator

of (C(t))t≥0.
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