ISRAEL JOURNAL OF MATHEMATICS **165** (2008), 253–280 DOI: 10.1007/s11856-008-1012-3

ALGEBRA HOMOMORPHISMS FROM COSINE CONVOLUTION ALGEBRAS*

BY

Pedro J. Miana

Department of Mathematics, University of Zaragoza 50009 Zaragoza, Spain e-mail: pjmiana@unizar.es

ABSTRACT

In this paper we deal with the weighted Banach algebra $L^1_{\omega}(\mathbb{R}^+, *_c)$, where $*_c$ is the cosine convolution product. We describe its character space and its multiplier algebra. Our main results concern bounded algebra homomorphisms from $L^1_{\omega}(\mathbb{R}^+, *_c)$. We give a variant of Kisyński's theorem for such homomorphisms and characterize them in terms of integrated cosine functions. A generalized form of the Sova-Da Prato-Giusti theorem about generation of cosine functions is also given.

Introduction

Let \mathbb{R}, \mathbb{R}^+ and \mathbb{C} be the sets of real, non-negative real and complex numbers respectively, and let μ be a non-negative Borel measure on \mathbb{R}^+ . As usual, the Banach space $(L^1_{\mu}(\mathbb{R}^+), || ||_{\mu})$ is the set (of classes) of Lebesgue-measurable functions, $f : \mathbb{R}^+ \to \mathbb{C}$, such that

$$\|f\|_{\mu} := \int_0^\infty |f(t)| d\mu(t) < \infty.$$

A bound for μ is an element $\kappa \in \{-\infty\} \cup \mathbb{R}$ such that $(\epsilon_{-\lambda})_{\lambda > \kappa} \subset L^1_{\mu}(\mathbb{R}^+)$, where $\epsilon_{-\lambda}(t) := e^{-\lambda t}$ for $t \in \mathbb{R}^+$.

^{*} Partly supported by Project MTM2004-03036 and MTM 2007-61446 , DGI-FEDER, of the MCYT, Spain, and Project E-64, D. G. Aragón, Spain. Received December 22, 2005 and in revised form November 27, 2006

For two Banach spaces X and Y, we denote by $\mathcal{B}(X, Y)$ the Banach space of bounded linear operators from X to Y. Put $\mathcal{B}(X) := \mathcal{B}(X, X)$. Recently, W. Chojnacki has established the following result.

THEOREM 0.1 ([5], Theorem 1.2): Let μ be a non-negative Borel measure on \mathbb{R}^+ with bound κ , X a Banach space, and $r : (\kappa, \infty) \to X$ a function. Then the following conditions are equivalent:

- (i) There exists $T \in \mathcal{B}(L^1_{\mu}(\mathbb{R}^+), X)$ such that $r(\lambda) = T(\epsilon_{-\lambda})$ for $\lambda > \kappa$.
- (ii) The function r belongs to $C^{(\infty)}((\kappa, \infty), X)$ and satisfies

$$\|r\|_{W,\mu,\kappa} := \sup\left\{\frac{\|r^{(n)}(\lambda)\|}{\|t^n e^{-\lambda t}\|_{\mu}} \colon n \in \mathbb{N} \cup \{0\}, \lambda \in (\kappa, \infty)\right\} < \infty.$$

Moreover, if there exists T as in (i), then T is unique and $||T|| = ||r||_{W,\mu,\kappa}$.

Particularly interesting applications of the above theorem arise when one considers spaces $L^1_{\mu}(\mathbb{R}^+)$ endowed with an algebraic structure. Let $\omega : \mathbb{R}^+ \to \mathbb{R}^+$ be a weight function, i.e., a continuous function such that $\omega(s+t) \leq C\omega(s)\omega(t)$ for $s, t \geq 0$ for a constant $0 < C < \infty$. Then there exists $\kappa \in \mathbb{R}$ and M > 0 such that $\omega(t) \leq Me^{\kappa t}$ for t > 0. Moreover, the Lebesgue space $(L^1_{\omega}(\mathbb{R}^+), \| \|_{\omega})$ is a Banach algebra with respect to the convolution * defined by

$$f * g(t) := \int_0^t f(t-s)g(s)ds, \quad f,g \in L^1_\omega(\mathbb{R}^+),$$

and the norm given by

$$||f||_{\omega} := \int_0^\infty |f(t)|\omega(t)dt < \infty, \quad f \in L^1_{\omega}(\mathbb{R}^+).$$

We denote this algebra by $L^1_{\omega}(\mathbb{R}^+, *)$ (in particular, $L^1(\mathbb{R}^+, *)$ for $\omega(t) = 1$).

Let \mathcal{A} be a Banach algebra. A continuous function $r : (\kappa, \infty) \to \mathcal{A}$ is a pseudo-resolvent if the equation

$$r(\lambda) - r(\mu) = (\mu - \lambda)r(\lambda)r(\mu)$$

holds for $\lambda, \mu > \kappa$. If $(\epsilon_{-\lambda})_{\lambda > \kappa} \subset L^1_{\omega}(\mathbb{R}^+)$, then $(\epsilon_{-\lambda})_{\lambda > \kappa}$ is a pseudo-resolvent in $L^1_{\omega}(\mathbb{R}^+, *)$.

J. Kisyński was the first one to notice a connection between algebra homomorphisms (in particular representations) and pseudo-resolvents, see [3] and [9]. The following theorem characterizes certain classes of pseudo-resolvents and shows that $(\epsilon_{-\lambda})_{\lambda>\kappa}$ is a canonical pseudo-resolvent for these classes. THEOREM 0.2 ([5] Theorem 5.1): Let \mathcal{A} be a Banach algebra, ω a weight function on \mathbb{R}^+ with bound κ , and $r : (\kappa, \infty) \to \mathcal{A}, \lambda \mapsto r(\lambda)$ a pseudo-resolvent. Then the following conditions are equivalent:

- (i) There exists a bounded algebra homomorphism $T \in \mathcal{B}(L^1_{\omega}(\mathbb{R}^+), \mathcal{A})$ such that $r(\lambda) = T(\epsilon_{-\lambda})$ for $\lambda > \kappa$.
- (ii) The function r satisfies the Hille–Yosida condition

$$|r||_{W,\omega,\kappa} = \sup\left\{\frac{n! \|r^{n+1}(\lambda)\|}{\|t^n e^{-\lambda t}\|_{\omega}} \colon n \in \mathbb{N} \cup \{0\}, \lambda \in (\kappa, \infty)\right\} < \infty.$$

Moreover, if there exists T as in (i), then T is unique and $||T|| = ||r||_{W,\omega,\kappa}$.

Kisyński's point of view allows generalizations of the Trotter–Kato theorem and has interesting applications in the generation of one-parameter and integrated semigroups. In fact, a first version of Theorem 0.1 was derived directly from the Hille–Yosida theorem in [3].

In this paper we consider the cosine convolution product $*_c$ in the Banach space $L^1_{\omega}(\mathbb{R}^+)$ for certain weight functions ω , see Section 1. We describe the character space of the Banach algebra $L^1_{\omega}(\mathbb{R}^+, *_c)$ and show that its multiplier algebra $Mul(L^1_{\omega}(\mathbb{R}^+, *_c))$ is isomorphic to $M_{\omega}(\mathbb{R}^+, *_c)$ (Theorem 2.6). Here $M_{\omega}(\mathbb{R}^+)$ is the space of all Borel measures on \mathbb{R}^+ such that

$$\|\mu\|_{\omega} := \int_{\mathbb{R}^+} \omega(t) d|\mu|(t) < \infty,$$

where $|\mu|$ denotes the total variation of μ .

In the third section we prove a variant of Kisyński's theorem for algebra homomorphisms from $L^1_{\omega}(\mathbb{R}^+, *_c)$ (Theorem 3.1). Following similar ideas to those of the case $L^1_{\omega}(\mathbb{R}^+, *)$ in [12], we consider in Section 4 integrated cosine functions, fractional Banach algebras $\mathcal{T}^{(\alpha)}_+(\omega_{\alpha}, *_c)$ (which are contained in $L^1_{\omega}(\mathbb{R}^+, *_c)$) and uniformly bounded limits of fractional homomorphisms, in order to characterize algebra homomorphisms from $L^1_{\omega}(\mathbb{R}^+, *_c)$ into a Banach algebra \mathcal{A} (Theorem 4.8).

In the last section we prove a generalization of the generation theorem for cosine functions on a Banach space (Theorem 5.3). The generation theorem for cosine functions has been established by M. Sova in [17] and G. Da Prato and E. Giusti in [7].

Our approach is closer to that taken in a paper of A. Bobrowski in [2]. Bobrowski's paper exploits the subalgebra $L^1_{e,\Omega}(\mathbb{R})$ of even functions in the Banach

algebra $L^1_{\Omega}(\mathbb{R})$, where $\Omega : \mathbb{R} \to \mathbb{R}^+$ is a symmetric weight function, the norm is defined by

$$\|F\|_{\Omega} := \int_{-\infty}^{\infty} |F(t)|\Omega(t)dt < \infty, \quad F \in L^{1}_{\Omega}(\mathbb{R}),$$

and the convolution product * given by

$$F * G(t) := \int_{-\infty}^{\infty} F(s-t)G(s)ds, \quad F, G \in L^{1}_{\Omega}(\mathbb{R}).$$

Although $L^1_{e,\Omega}(\mathbb{R})$ is isomorphic to $L^1_{\omega}(\mathbb{R}^+, *_c)$ with ω the restriction of Ω to \mathbb{R}^+ , we prefer to make use of the former rather than the latter. We work directly with the structure of \mathbb{R}^+ without considering \mathbb{R}^+ inside of \mathbb{R} . Both papers share a common spirit and some similar results are obtained after different starting points (compare Theorem 3.1 and [2, Proposition 3.1]).

Notation: For $z \in \mathbb{C}$, $\Re z$ denotes the real part of z and $\Im z$ denotes its imaginary part. Let X be a Banach space and T a linear (bounded or unbounded) operator on X. Let $\rho(T)$ denote the resolvent set of T and $(\lambda - T)^{-1}$ the resolvent operator for $\lambda \in \rho(T)$.

1. The Banach algebra $L^1_{\omega}(\mathbb{R}^+, *_c)$

In this section we consider in detail the Banach algebra $L^1_{\omega}(\mathbb{R}^+, *_c)$: we show that it has bounded approximate identities and its character space may be identified with a half strip of complex numbers.

Definition 1.1: A continuous map $0 \neq \omega : \mathbb{R}^+ \to \mathbb{R}^+$ is an **extendible weight** function if it satisfies

$$\omega(t+s) \le C\omega(t)\omega(s), \qquad \omega(t-s) \le C\omega(t)\omega(s), \qquad 0 \le s \le t_s$$

for some constant C > 0. The infimum of such constants is called the **growth** constant of ω .

Note that $\omega : \mathbb{R}^+ \to \mathbb{R}$ is an extendible weight function if and only if the function $\Omega : \mathbb{R} \to \mathbb{R}^+$ defined by

(1.1)
$$\Omega(t) := \begin{cases} \omega(t), & t \ge 0, \\ \omega(-t), & t \le 0, \end{cases}$$

is a weight function on \mathbb{R} . Examples of extendible weight functions are $\omega(t) = e^{\kappa t}$; $\omega(t) = (1+t)^{\gamma}$ and $\omega(t) = e^{\kappa t^{\gamma}}$ with $\kappa, \gamma, t \ge 0$.

256

The proof of the following lemma is straightforward.

LEMMA 1.2: Let ω be an extendible weight function.

- (i) Then $\omega(t) \neq 0$ holds for any $t \geq 0$.
- (ii) There exists M > 0 such that $\omega(t) \ge M$ for any $t \ge 0$.

Define a convolution product \circ in the Banach space $L^1_{\omega}(\mathbb{R}^+)$ by

$$f \circ g(t) := \int_t^\infty f(s-t)g(s)ds,$$

for $t \ge 0$ and $f, g \in L^1_{\omega}(\mathbb{R}^+)$. It is easy to check that $f \circ g \in L^1_{\omega}(\mathbb{R}^+)$, the product \circ is non-commutative (see Example 1) and $||f \circ g||_{\omega} \le ||f||_{\omega} ||g||_{\omega}$. Products * and \circ are dual in the sense that

(1.2)
$$\int_0^\infty h(t)(f*g)(t)dt = \int_0^\infty f(t)(g\circ h)(t)dt,$$

for $f, g \in L^1_{\omega}(\mathbb{R}^+)$ and $h \in L^{\infty}_{\omega}(\mathbb{R}^+)$, where the Lebesgue space $L^{\infty}_{\omega}(\mathbb{R}^+)$ is the dual Banach space of $L^1_{\omega}(\mathbb{R}^+)$ given by

 $L^{\infty}_{\omega}(\mathbb{R}^+) := \{ f : \mathbb{R}^+ \to \mathbb{C} \, | \, \omega(t)^{-1} | f(t) | \text{ is bounded for almost every } t \ge 0 \}.$

Then the cosine convolution product $*_c$ is defined by

$$f *_c g := \frac{1}{2} \left(f * g + f \circ g + g \circ f \right), \quad f, g \in L^1_\omega(\mathbb{R}^+),$$

see for example [16].

PROPOSITION 1.3: Let ω be an extendible weight function on \mathbb{R}^+ with growth constant C and $f, g \in L^1_{\omega}(\mathbb{R}^+)$. Then:

- (i) $|| |f| \circ |g| + |g| \circ |f| ||_{\omega} \le C ||f||_{\omega} ||g||_{\omega}$.
- (ii) $||f *_c g||_{\omega} \le C ||f||_{\omega} ||g||_{\omega}$.

Proof. First we use definitions of the cosine convolution product and extendible weight functions and then we apply the Fubini theorem.

Let $L^1_{\omega}(\mathbb{R}^+, *_c)$ denote the Banach algebra which results from providing $L^1_{\omega}(\mathbb{R}^+)$ with the cosine convolution product $*_c$. It is straightforward that

(1.3)
$$f *_{c} g(t) = \frac{1}{2} (F * G)(t), \quad t \ge 0,$$

where $F, G : \mathbb{R} \to \mathbb{C}$ are defined by F(t) := f(|t|), G(t) := g(|t|) for $t \in \mathbb{R}$, $F, G \in L^1_{\Omega}(\mathbb{R})$, and Ω is given by (1.1).

The cosine convolution product $*_c$ has been considered by several authors, see for example [16] and [18]; for $\omega(t) = e^{\kappa t}$ with $\kappa \ge 0$ see [13]. However, the algebraic structure of $L^1_{\omega}(\mathbb{R}^+, *_c)$ has not been studied in detail yet. Firstly we check cosine convolution products of some known functions.

Example 1: Let $\omega : \mathbb{R}^+ \to \mathbb{R}$ be an extendible weight function with bound $\kappa \geq 0$. Then the exponential function $\epsilon_{-\lambda}$ belongs to $L^1_{\omega}(\mathbb{R}^+)$ for any $\Re \lambda > \kappa$, and satisfies

$$\epsilon_{-\lambda} \circ \epsilon_{-\nu} = \frac{1}{\lambda + \nu} \epsilon_{-\nu}, \quad \epsilon_{-\lambda} * \epsilon_{-\nu} = \frac{1}{\nu - \lambda} \left(\epsilon_{-\lambda} - \epsilon_{-\nu} \right),$$

and

(1.4)
$$\epsilon_{-\lambda} *_c \epsilon_{-\nu} = \frac{1}{\lambda^2 - \nu^2} \left(\lambda \epsilon_{-\nu} - \nu \epsilon_{-\lambda} \right),$$

whenever $\Re \lambda$, $\Re \nu > \kappa$. Moreover, the linear space spanned by the set $\{\epsilon_{-\nu} : \nu > \kappa\}$ is dense in $L^1_{\omega}(\mathbb{R}^+)$, i.e., the set $\{\epsilon_{-\nu} : \nu > \kappa\}$ is *total* in $L^1_{\omega}(\mathbb{R}^+)$ ([5, Proposition 2.2]).

Example 2: Set $\omega(t) = (1+t)^{\gamma}$ with $0 \leq \gamma < 1$. The **Poisson semigroup** $(P^z)_{\Re z > 0}$ in $L^1_{(1+|t|)^{\gamma}}(\mathbb{R})$ is given by

$$P^{z}(t) := \frac{1}{\pi} \frac{z}{z^{2} + t^{2}}, \quad t \in \mathbb{R}, \ \Re z > 0.$$

Put $p^{z}(t) := 2P^{z}(t)$ for $t \geq 0$. Then $(p^{z})_{\Re z > 0} \subset L^{1}_{(1+t)^{\gamma}}(\mathbb{R}^{+}, *_{c})$ and satisfies the semigroup law, $p^{z} *_{c} p^{z'} = p^{z+z'}$. This is due to the fact that

$$p^{z} *_{c} p^{z'} = 2(P^{z} * P^{z'}) = 2P^{z+z'} = p^{z+z'},$$

where we have used equality (1.3). The following estimate is readily seen:

$$||p^s||_{(1+t)^{\gamma}} \le C(1+s^{\gamma}), \quad s > 0.$$

Example 3: Let ω be an extendible weight function such that $\omega(t) \leq M e^{\kappa t}$ for $t \geq 0$ and $\kappa > 0$. Let Ω be as in (1.1). The Gaussian semigroup $(G^z)_{\Re z > 0}$ in $L^1_{\Omega}(\mathbb{R})$ is defined by

$$G^{z}(t) := 1\sqrt{4\pi z}e^{-t^{2}/4z}, \quad t \in \mathbb{R}, \ \Re z > 0.$$

Define $g^{z}(t) := 2G^{z}(t)$ for $t \ge 0$. Then $(g^{z})_{\Re z > 0} \subset L^{1}_{\omega}(\mathbb{R}^{+}, *_{c})$ and the following semigroup law holds,

$$g^{z} *_{c} g^{z'} = g^{z+z'}, \quad \Re z, \Re z' > 0.$$

Moreover,

$$||g^{z}||_{\omega} \le M(|z|/(\Re z))^{1/2} e^{\kappa^{2}|z|^{2}/\Re z}, \quad \Re z > 0.$$

PROPOSITION 1.4: Let ω be an extendible weight function on \mathbb{R}^+ . The Banach algebra $L^1_{\omega}(\mathbb{R}^+, *_c)$ has a bounded approximate unit.

Proof. By Example 3, $(g^z)_{\Re z>0} \subset L^1_{\omega}(\mathbb{R}^+, *_c)$ and $||g^s||_{\omega} \leq C'$ for $s \in (0, 1)$. We have to check that $g^s *_c f \to f$ for $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$ when $s \to 0^+$. Let Ω be given by equation (1.1) and put F(t) := f(|t|) for $t \in \mathbb{R}$. Then

$$||g^{s} *_{c} f - f||_{\omega} = \int_{0}^{\infty} |G^{s} * F(t) - F(t)|\omega(t)dt = \frac{1}{2} ||G^{s} * F - F||_{\Omega} \to 0,$$

where we have used the fact that $(G^s)_{0 < s < 1}$ is a bounded approximate unit on $L^1_{\Omega}(\mathbb{R})$.

For ω an extendible weight function, let

$$\sigma_{\omega} := \lim_{t \to \infty} \log \omega(t) / t = \inf_{t > 1} \log \omega(t) / t.$$

By the assertion (ii) of Lemma 1.2, the inequality $\sigma_{\omega} \geq 0$ holds. It is wellknown that the Banach algebra $L^1_{\omega}(\mathbb{R}^+,*)$ is semisimple, its character space $\triangle(L^1_{\omega}(\mathbb{R}^+,*))$ is homeomorphic to the half plane $\overline{\Pi}_{-\sigma_{\omega}}$ defined as

$$\overline{\Pi}_{-\sigma_{\omega}} := \{ z \in \mathbb{C} \colon \Re z \ge -\sigma_{\omega} \},$$

and the Gelfand transform is the Laplace transform $\mathcal{L}: L^1_{\omega}(\mathbb{R}^+, *_c) \to C_0(\overline{\Pi}_{-\sigma_{\omega}})$ given by

$$\mathcal{L}(f)(z) = \int_0^\infty f(t) e^{-zt} dt, \quad z \in \overline{\Pi}_{-\sigma_\omega};$$

see these results, for example, in [6, Theorem 4.7.27].

Now we come back to the Banach algebra $L^1_{\Omega}(\mathbb{R})$ defined in the introduction. It is semisimple, its character space $\Delta(L^1_{\Omega}(\mathbb{R}))$ is homeomorphic to the strip

$$\overline{\Pi}_{-\sigma_{\omega},\sigma_{\omega}} := \{ z \in \mathbb{C} \colon -\sigma_{\omega} \le \Re z \le \sigma_{\omega} \},\$$

and the Gelfand transform is the bilateral Laplace transform $\mathcal{L} : L^1_{\Omega}(\mathbb{R}) \to C_0(\overline{\Pi}_{-\sigma_{\omega},\sigma_{\omega}})$ defined as

$$\mathcal{L}(F)(z) = \int_{-\infty}^{\infty} F(t) e^{-zt} dt, \quad z \in \overline{\Pi}_{-\sigma_{\omega}, \sigma_{\omega}},$$

see [6, Theorem 4.7.33].

THEOREM 1.5: Let ω be an extendible weight function. Then $L^1_{\omega}(\mathbb{R}^+, *_c)$ is a semisimple Banach algebra and its character space $\Delta(L^1_{\omega}(\mathbb{R}^+, *_c))$ can be identified with the half strip $\overline{\Pi}^+_{-\sigma_{\omega},\sigma_{\omega}}$ where

$$\overline{\Pi}^+_{-\sigma_{\omega},\sigma_{\omega}} := \{ z \in \mathbb{C} \colon -\sigma_{\omega} \le \Re z \le \sigma_{\omega}; \Im z \ge 0 \}.$$

The Gelfand transform is given by the cosine transform

$$\mathcal{C}: L^1_{\omega}(\mathbb{R}^+, *_c) \to C_0(\overline{\Pi}^+_{-\sigma_{\omega}, \sigma_{\omega}}),$$

thus

$$\mathcal{C}(f)(z) := \int_0^\infty f(t) \cosh(zt) dt, \quad z \in \overline{\Pi}^+_{-\sigma_\omega, \sigma_\omega}.$$

Proof. If $\kappa > \sigma_{\omega}$, then $\omega(t) \leq Ce^{\kappa t}$ for $t \geq 0$, and $(\epsilon_{-\lambda})_{\Re\lambda > \kappa} \subset L^{1}_{\omega}(\mathbb{R}^{+})$. Take $\chi \in \Delta(L^{1}_{\omega}(\mathbb{R}^{+}, *))$ and define

$$g(\lambda) := \chi(\epsilon_{-\lambda}), \quad \Re \lambda > \kappa.$$

Note that $g \neq 0$: if g = 0 then we use the fact that the set $(\epsilon_{-\lambda})_{\Re\lambda>\kappa}$ is total on $L^1_{\omega}(\mathbb{R}^+)$ to conclude that $\chi = 0$, which is a contradiction. Using Example 1, we have

(1.5)
$$g(\lambda)g(\nu) = \frac{1}{\lambda^2 - \nu^2} (\lambda g(\nu) - \nu g(\lambda)), \quad \Re \lambda, \Re \nu > \kappa.$$

Since $g \neq 0$, it follows that $g(\kappa + 1) \neq 0$ (otherwise, using the equality (1.5) we conclude that g = 0). Taking $\nu = \kappa + 1$ and $z := \frac{\kappa + 1}{g(\kappa + 1)} - (\kappa + 1)^2$, we obtain from the equality (1.5) that

$$g(\lambda) = \lambda/(\lambda^2 + z), \quad \Re \lambda > \kappa.$$

Take now $z = -u^2$ with $u \in \mathbb{C}$. Since the character χ is continuous, we see that

$$|g(\lambda)| = \left|\frac{\lambda}{\lambda^2 - u^2}\right| = \frac{|\lambda|}{|\lambda - u|} \frac{1}{|\lambda + u|} \le \|\chi\| \, \|\epsilon_{-\lambda}\|_{\omega} \le \frac{\|\chi\|}{\Re\lambda - \kappa},$$

for $\Re \lambda > \kappa$. Now suppose that $|\Re u| > \kappa$. Then we take $\lambda = u$ or $\lambda = -u$ to obtain a contradiction with the above inequalities. We conclude that $-\kappa \leq \Re u \leq \kappa$ and $-\sigma_{\omega} \leq \Re u \leq \sigma_{\omega}$. Moreover, we have

$$\chi(\epsilon_{-\lambda}) = \frac{\lambda}{\lambda^2 - u^2} = \int_0^\infty \epsilon_{-\lambda}(t) \cosh(ut) dt,$$

for $\Re \lambda > \sigma_{\omega}$. Since the set $(\epsilon_{-\lambda})_{\Re \lambda > \kappa}$ is total on $L^1_{\omega}(\mathbb{R}^+)$, we obtain

$$\chi(f) = \int_0^\infty f(t) \cosh(ut) dt = \mathcal{C}(f)(u), \quad f \in L^1_\omega(\mathbb{R}^+, *_c).$$

260

Note that $\mathcal{C}(f)(u) = \mathcal{C}(f)(-u)$ for $u \in \overline{\Pi}_{-\sigma_{\omega},\sigma_{\omega}}$. In conclusion, given $\chi \in \Delta(L^1_{\omega}(\mathbb{R}^+,*))$ there exists $u \in \overline{\Pi}^+_{-\sigma_{\omega},\sigma_{\omega}}$ such that

$$\chi(f) = \mathcal{C}(f)(u), \quad f \in L^1_{\omega}(\mathbb{R}^+, *_c).$$

Conversely, it is readily seen that $f \mapsto \mathcal{C}(f)(u)$ is a character on $L^1_{\omega}(\mathbb{R}^+, *_c)$ with $u \in \overline{\Pi}^+_{-\sigma_{\omega},\sigma_{\omega}}$, see similar ideas about cosine transforms in [13]. Thus the character space $\Delta(L^1_{\omega}(\mathbb{R}^+, *_c))$ can be identified with the set $\overline{\Pi}^+_{-\sigma_{\omega},\sigma_{\omega}}$.

In order to show that $L^1_{\omega}(\mathbb{R}^+, *_c)$ is a semisimple Banach algebra, it is enough to check that $\mathcal{C} : L^1_{\omega}(\mathbb{R}^+, *_c) \to C_0(\overline{\Pi}^+_{-\sigma_{\omega}, \sigma_{\omega}})$ is injective, see for example [6, Corollary 2.3.26]. Take $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$ such that $\mathcal{C}(f) = 0$. Then

$$0 = \mathcal{C}(f)(u) = \frac{1}{2} \int_{-\infty}^{\infty} F(t) e^{-ut} dt = \frac{1}{2} \mathcal{L}(F)(u), \quad u \in \overline{\Pi}_{-\sigma_{\omega}, \sigma_{\omega}}$$

where F(t) := f(|t|) for $t \ge 0$. By the analytic continuation principle, we have $\mathcal{L}(F)(u) = 0$ for every $u \in \overline{\Pi}_{-\sigma_{\omega},\sigma_{\omega}}$. Since $L^{1}_{\Omega}(\mathbb{R})$ is semisimple, it follows that F = 0 and f = 0.

2. The Banach algebra $Mul(L^1_{\omega}(\mathbb{R}^+, *_c))$

For a commutative Banach algebra \mathcal{A} , let $Mul(\mathcal{A})$ denote the subspace of bounded linear operators on $\mathcal{A}, T : \mathcal{A} \to \mathcal{A}$, such that

$$T(ab) = aT(b), \quad a, b \in \mathcal{A}.$$

The space $Mul(\mathcal{A})$ is a Banach algebra with respect to the composition and the operator norm. It is usually called the **multiplier algebra** of \mathcal{A} .

In the case that ω and Ω are weight functions on \mathbb{R}^+ and \mathbb{R} respectively, the multiplier algebras of $L^1_{\omega}(\mathbb{R}^+,*)$ and $L^1_{\Omega}(\mathbb{R})$ may be identified with the space of Borel measures on \mathbb{R}^+ and \mathbb{R} of total variation,

$$Mul(L^1_{\omega}(\mathbb{R}^+,*)) \cong M_{\omega}(\mathbb{R}^+,*), \quad Mul(L^1_{\Omega}(\mathbb{R})) \cong M_{\Omega}(\mathbb{R}),$$

where \cong means "isomorphic" as Banach algebras, see for example [4] and [6]. We remind that the convolution product $\mu * \nu$ of two measures $\mu, \nu \in M_{\omega}(\mathbb{R}^+)$ is defined by

$$(\mu*\nu)(A):=\int_{\mathbb{R}^+}\mu(A\ominus t)d\nu(t),$$

where $A \ominus t = \{s \in \mathbb{R}^+ : s = a - t \text{ for some } a \in A\}$ for a Borel set A on \mathbb{R}^+ and $\mu * \nu \in M_{\omega}(\mathbb{R}^+)$, see for example [4]. In this section we show that

$$Mul(L^1_{\omega}(\mathbb{R}^+, *_c)) \cong M_{\omega}(\mathbb{R}^+, *_c).$$

Let $C_{b,\omega}(\mathbb{R}^+)$ be the space of all continuous functions f on \mathbb{R}^+ such that there exists M > 0 with

$$|f(t)| \le M\omega(t)$$
 for all $t \ge 0$,

and $C_{0,\omega}$ be the space of all continuous functions f on \mathbb{R}^+ for which

$$\lim_{t \to \infty} f(t) / \omega(t) = 0.$$

Endowed with the norm

$$\|f\|_{\infty,\omega} := \sup\{|f(t)|/\omega(t) \colon t \ge 0\},\$$

 $C_{b,\omega}(\mathbb{R}^+)$ and $C_{0,\omega}(\mathbb{R}^+)$ are Banach spaces. It is well-known that the topological dual space of $C_{0,\omega}(\mathbb{R}^+)$, $(C_{0,\omega}(\mathbb{R}^+))'$, is isomorphic to $M_{\omega}(\mathbb{R}^+)$. In fact, for every $T \in (C_{0,\omega}(\mathbb{R}^+))'$ there exists a unique $\mu \in M_{\omega}(\mathbb{R}^+)$ such that

$$T(f) = \int_0^\infty f(t)d\mu(t), \quad f \in C_{0,\omega}(\mathbb{R}^+),$$

see [4]. Let $\mu \in M_{\omega}(\mathbb{R}^+)$ and $f \in L^1_{\omega}(\mathbb{R}^+)$. Then $\mu * f \in L^1_{\omega}(\mathbb{R}^+)$ where

$$\mu * f(t) := \int_0^t f(t-s) d\mu(s), \quad t \in \mathbb{R}^+,$$

and $\|\mu * f\|_{\omega} \leq C \|\mu\|_{\omega} \|f\|_{\omega}$. We now consider other convolution products.

Definition 2.1: Let $\mu \in M_{\omega}(\mathbb{R}^+)$ and $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$. We define $f \circ \mu, \mu \circ f$ and $\mu *_c f$ by

$$\begin{split} f \circ \mu(t) &:= \int_{t}^{\infty} f(t-s) d\mu(s), \quad \mu \circ f(t) := \int_{0}^{\infty} f(s+t) d\mu(s), \\ \mu *_{c} f(t) &:= \frac{1}{2} \left(\mu * f + \mu \circ f + f \circ \mu \right)(t), \end{split}$$

for $t \geq 0$.

Note that $f *_c \delta_0 = f$ where δ_0 is the Dirac measure on 0 and $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$. The following proposition is readily established.

PROPOSITION 2.2: Let ω be an extendible weight function on \mathbb{R}^+ with growth constant C, $\mu \in M_{\omega}(\mathbb{R}^+)$ and $f, g \in L^1_{\omega}(\mathbb{R}^+)$. Then: (i) $f \circ \mu, \mu \circ f, \mu *_c f \in L^1_{\omega}(\mathbb{R}^+)$;

- (ii) $\mu *_c (f *_c g) = f *_c (\mu *_c g);$
- (iii) $\| \mu \circ f + f \circ \mu \|_{\omega} \leq C \|\mu\|_{\omega} \|f\|_{\omega};$
- (iv) $\|\mu *_c f\|_{\omega} \le C \|\mu\|_{\omega} \|f\|_{\omega}$.

The next lemma is needed in order to prove the main result of this section.

LEMMA 2.3: Let ω be an extendible weight function on \mathbb{R}^+ , $h \in C_{0,\omega}(\mathbb{R}^+)$ and $f, g \in L^1_{\omega}(\mathbb{R}^+)$. Then:

- (i) $h * f, h \circ f, f \circ h, h *_c f \in C_{0,\omega}(\mathbb{R}^+);$
- (ii) $\int_0^\infty h(t)(f *_c g)(t)dt = \int_0^\infty f(t)(h *_c g)(t)dt.$

Proof. (i) It is clear that functions $h * f, h \circ f, f \circ h, h *_c f$ are continuous. Moreover, we use the property that $\omega(t-s) \leq C\omega(t)\omega(s)$ to prove that

$$|(h*f)(t)| \le \int_0^t |h(t-s)| \, |f(s)| \, ds = C\omega(t) \int_0^t \frac{|h(t-s)|}{\omega(t-s)} \omega(s) |f(s)| \, ds,$$

for $t \ge 0$ and $h * f \in C_{0,\omega}(\mathbb{R}^+)$; in a similar way we prove that $h \circ f, f \circ h \in C_{0,\omega}(\mathbb{R}^+)$ and so $h *_c f \in C_{0,\omega}(\mathbb{R}^+)$.

By part (i) and Fubini's theorem, we obtain

$$\int_0^\infty h(t)(f \circ g)(t)dt = \int_0^\infty f(t)(h \circ g)(t)dt,$$
$$\int_0^\infty h(t)(g \circ f)(t)dt = \int_0^\infty f(t)(g * h)(t)dt.$$

With these two equalities and (1.2) we conclude the proof of (ii).

Definition 2.4: Let A be a Borel set on \mathbb{R}^+ and $t \in \mathbb{R}^+$. We define the Borel set $t \oplus A$ as

$$t \oplus A := \{ s \in \mathbb{R}^+ \colon s = t + a \text{ for some } a \in A \}.$$

Given $\mu, \nu \in M_{\omega}(\mathbb{R}^+)$, define $\mu \circ \nu, \mu *_c \nu \in M_{\omega}(\mathbb{R}^+)$ by

$$\mu \circ \nu(A) := \int_{\mathbb{R}^+} \nu(t \oplus A) d\mu(t), \quad \mu *_c \nu := \frac{1}{2} (\mu * \nu + \mu \circ \nu + \nu \circ \mu).$$

The proof of the following proposition is straightforward.

PROPOSITION 2.5: Let ω be an extendible weight function on \mathbb{R}^+ with growth constant $C, f \in L^1_{\omega}(\mathbb{R}^+)$ and $\mu, \nu \in M_{\omega}(\mathbb{R}^+)$. Then:

- (i) $\mu \circ \nu, \mu *_c \nu \in M_{\omega}(\mathbb{R}^+);$
- (ii) $\|\mu *_c \nu\|_{\omega} \leq C \|\mu\|_{\omega} \|\nu\|_{\omega};$
- (iii) $(\mu *_c \nu) *_c f = \mu *_c (\nu *_c f).$

Let ω be an extendible weight function on \mathbb{R}^+ with growth constant C. Then, when endowed with $*_c$, the Banach space $M_{\omega}(\mathbb{R}^+)$ is in fact a Banach algebra. We denote it by $M_{\omega}(\mathbb{R}^+, *_c)$. Let us define the map $T: M_{\omega}(\mathbb{R}^+, *_c) \to Mul(L^1_{\omega}(\mathbb{R}^+, *_c)), \mu \mapsto T_{\mu}$, by

$$T_{\mu}(f) := \mu *_{c} f, \quad f \in L^{1}_{\omega}(\mathbb{R}^{+}, *_{c}).$$

Since $\|\mu *_c f\|_{\omega} \leq C \|\mu\|_{\omega} \|f\|_{\omega}$ (Proposition 2.2 (iv)) and $\mu *_c (f *_c g) = f *_c (\mu *_c g)$ for $f, g \in L^1_{\omega}(\mathbb{R}^+, *_c)$ (Proposition 2.2 (ii)), it follows that T_{μ} is a multiplier on $L^1_{\omega}(\mathbb{R}^+, *_c), \|T_{\mu}\| \leq C \|\mu\|_{\omega}$ and $\|T\| \leq C$. Moreover, using Proposition 2.5 (iii), the map T is an algebra homomorphism: if $\mu, \nu \in M_{\omega}(\mathbb{R}^+)$ and $f \in L^1_{\omega}(\mathbb{R}^+)$, then

$$T_{\mu *_c \nu}(f) = (\mu *_c \nu) *_c f = \mu *_c (\nu *_c f) = T_{\mu}(T_{\nu}(f)).$$

THEOREM 2.6: The map T is a bounded algebra isomorphism from $M_{\omega}(\mathbb{R}^+, *_c)$ onto $Mul(L^1_{\omega}(\mathbb{R}^+, *_c))$.

Proof. It is enough to show that each $S \in Mul(L^1_{\omega}(\mathbb{R}^+, *_c))$ is equal to T_{μ} for some $\mu \in M_{\omega}(\mathbb{R}^+)$ such that $\|\mu\|_{\omega} \leq M\|S\|$ for some M > 0.

Since $L^1_{\omega}(\mathbb{R}^+, *_c)$ has a bounded approximate identity (Proposition 1.4), for each $S \in Mul(L^1_{\omega}(\mathbb{R}^+, *_c))$ there exists a net $\{s_{\beta}\}_{\beta \in B} \subset L^1_{\omega}(\mathbb{R}^+, *_c)$ such that

(2.1)
$$S(f) = \lim_{\beta \in B} (s_{\beta} *_{c} f), \quad f \in L^{1}_{\omega}(\mathbb{R}^{+}, *_{c}).$$

and $\sup_{\beta \in B} \|s_{\beta}\|_{\omega} \leq M \|S\|$ (cf. [4, Proposition 2.1]).

Note that $\{s_{\beta}\}_{\beta \in B} \subset (C_{0,\omega}(\mathbb{R}^+))'$ and by the relative weak* compactness of bounded sets in $(C_{0,\omega}(\mathbb{R}^+))'$, there exists $\mu \in M_{\omega}(\mathbb{R}^+)$ and a subnet (which we write in the same way), $\{s_{\beta}\}_{\beta \in B}$, such that

(2.2)
$$\lim_{\beta \in B} \int_0^\infty g(t) s_\beta(t) dt = \int_0^\infty g(t) d\mu(t), \quad g \in C_{0,\omega}(\mathbb{R}^+),$$

and $\|\mu\| \leq M \|S\|$. Take $f \in L^1_{\omega}(\mathbb{R}^+)$ and $\psi \in C_{0,\omega}(\mathbb{R}^+)$. Then $\psi *_c f \in C_{0,\omega}(\mathbb{R}^+)$ by assertion (i) of Lemma 2.3, and

$$\int_0^\infty (\psi *_c f)(t) s_\beta(t) dt = \int_0^\infty \psi(t) (s_\beta *_c f)(t) dt,$$

by assertion (ii) of Lemma 2.3. Using the same ideas, it is easy to check that

$$\int_0^\infty (\psi *_c f)(t) d\mu(t) = \int_0^\infty \psi(t)(\mu *_c f)(t) dt.$$

Now we can write (2.2) as

$$\int_0^\infty \psi(t)(\mu *_c f)(t)dt = \lim_{\beta \in B} \int_0^\infty \psi(t)(s_\beta *_c f)(t)dt = \int_0^\infty \psi(t)S(f)(t)dt$$

where we apply (2.1). Since ψ is an arbitrary element of $C_{0,\omega}(\mathbb{R}^+)$, we have $S(f) = f *_c \mu$.

Remark: The above proof was inspired by the proof of [4, Theorem 3.2]. In fact, Chojnacki's theorem is an adaptation of a result of J. G. Wendel on group algebras, see more comments and details in [4].

3. A variant of Kisyński theorem on $L^1_{\omega}(\mathbb{R}^+,*_c)$

Let ω be an extendible weight function with bound κ , \mathcal{A} a commutative Banach algebra and $r : (\kappa, \infty) \to \mathcal{A}$ a function. By Theorem 0.1, there exists $T : L^1_{\omega}(\mathbb{R}^+) \to \mathcal{A}$ such that $r(\lambda) = T(\epsilon_{-\lambda})$ for $\lambda > \kappa$ if and only if $r \in C^{(\infty)}((\kappa, \infty), \mathcal{A})$ and

$$\|r\|_{W,\omega,\kappa} < \infty.$$

Next we prove a result similar to Theorem 0.2 for the algebra $L^1_{\omega}(\mathbb{R}^+, *_c)$. For $\omega(t) = 1$ this results appears in [2, Proposition 5.1].

THEOREM 3.1: Let \mathcal{A} be a Banach algebra, ω be an extendible weight function on \mathbb{R}^+ with bound $\kappa \geq 0, r \in C^{(\infty)}((\kappa, \infty), \mathcal{A})$ such that

 $\|r\|_{W,\omega,\kappa} < \infty.$

Then the following conditions are equivalent:

- (i) The bounded homomorphism $T: L^1_{\omega}(\mathbb{R}^+) \to \mathcal{A}$ such that $r(\lambda) = T(\epsilon_{-\lambda})$ for $\lambda > \kappa$ is an algebra homomorphism $T: L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{A}$.
- (ii) The function $(r(\sqrt{\lambda})/\sqrt{\lambda})_{\lambda > \kappa^2}$ is a pseudo-resolvent on \mathcal{A} .

Proof. We define $R(\lambda) := r(\sqrt{\lambda})/\sqrt{\lambda}$ for $\lambda > \kappa^2$. (i) \Rightarrow (ii) If $\lambda, \nu > \kappa^2$, then

$$\begin{split} R(\lambda)R(\nu) &= \frac{1}{\sqrt{\lambda}\sqrt{\nu}}T(\epsilon_{-\sqrt{\lambda}})T(\epsilon_{-\sqrt{\nu}}) = \frac{1}{\sqrt{\lambda}\sqrt{\nu}}T(\epsilon_{-\sqrt{\lambda}} \ \ast_c \epsilon_{-\sqrt{\nu}}) \\ &= \frac{1}{\sqrt{\lambda}\sqrt{\nu}}T\Big(\frac{1}{\lambda-\nu}\Big(\sqrt{\lambda}\epsilon_{-\sqrt{\nu}} - \sqrt{\nu}\epsilon_{-\sqrt{\lambda}}\Big)\Big) \\ &= \frac{1}{\lambda-\nu}\Big(\frac{1}{\sqrt{\nu}}T(\epsilon_{-\sqrt{\nu}}) - \frac{1}{\sqrt{\lambda}}T(\epsilon_{-\sqrt{\lambda}})\Big) = \frac{1}{\lambda-\nu}\left(R(\nu) - R(\lambda)\right), \end{split}$$

where we have used the equality (1.4).

(ii) \Rightarrow (i) Since the linear space spanned by the set $\{\epsilon_{-\nu} \colon \nu > \kappa\}$ is dense in $L^1_{\omega}(\mathbb{R}^+)$ ([5, Proposition 2.2]) and T is linear and bounded, it is enough to check that

$$T(\epsilon_{-\lambda} *_c \epsilon_{-\nu}) = T(\epsilon_{-\lambda})T(\epsilon_{-\nu}),$$

for $\lambda, \nu > \kappa$. Since $(R(\lambda))_{\lambda > \kappa^2}$ is a pseudo-resolvent, we have

$$T(\epsilon_{-\lambda})T(\epsilon_{-\nu}) = \lambda \mu R(\lambda^2)R(\nu^2) = \frac{\lambda \nu}{\lambda^2 - \nu^2} \left(R(\nu^2) - R(\lambda^2) \right)$$
$$= \frac{1}{\lambda^2 - \nu^2} \left(\lambda r(\nu) - \nu r(\lambda) \right) = T(\epsilon_{-\lambda} *_c \epsilon_{-\nu}),$$

where we have used again the equality (1.4) for $\lambda, \nu > \kappa$.

In Example 3, Section 1, we defined the Gaussian semigroup in $L^1_{\omega}(\mathbb{R}^+, *_c)$. We now consider the Gaussian transform $\mathcal{G}: L^1_{\omega_g}(\mathbb{R}^+, *) \to L^1_{\omega}(\mathbb{R}^+, *_c)$ given by

$$\mathcal{G}(f)(s) := \int_0^\infty f(t)g^t(s)dt, \quad s \in \mathbb{R}^+, \ f \in L^1_{\omega_g}(\mathbb{R}^+, *),$$

where $\omega_g(t) := \|g^t\|_{\omega}$ for $t \ge 0$. Then

(3.1)
$$\mathcal{G}(\epsilon_{-\lambda}) = \frac{1}{\sqrt{\lambda}} \epsilon_{-\sqrt{\lambda}}, \quad \lambda > \kappa^2,$$

(cf. [15]) and \mathcal{G} is an algebra homomorphism with $\|\mathcal{G}\| \leq 1$.

Let X be a Banach space and $T \in \mathcal{B}(L^1_{\omega}(\mathbb{R}^+), X)$. The Gaussian transform allows one to define $T_{\mathcal{G}} \in \mathcal{B}(L^1_{\omega_q}(\mathbb{R}^+), X)$ by

$$T_{\mathcal{G}}(f) := T(\mathcal{G}(f)), \quad f \in L^1_{\omega_g}(\mathbb{R}^+).$$

COROLLARY 3.2: Let \mathcal{A} be a Banach algebra, ω an extendible weight function on \mathbb{R}^+ with bound $\kappa \geq 0$ and $r \in C^{(\infty)}((\kappa, \infty), \mathcal{A})$ such that

$$\|r\|_{W,\omega,\kappa} < \infty.$$

Then the following conditions are equivalent:

(i) The bounded homomorphism $T: L^1_{\omega}(\mathbb{R}^+) \to \mathcal{A}$ is an algebra homomorphism, $T: L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{A}$, with

$$r(\lambda) = T(\epsilon_{-\lambda}), \quad \lambda > \kappa.$$

(ii) The bounded homomorphism $T_{\mathcal{G}} : L^1_{\omega_g}(\mathbb{R}^+) \to \mathcal{A}$ is an algebra homomorphism, $T_{\mathcal{G}} : L^1_{\omega_g}(\mathbb{R}^+, *) \to \mathcal{A}$, such that

$$T_{\mathcal{G}}(\epsilon_{-\lambda}) = \frac{r(\sqrt{\lambda})}{\sqrt{\lambda}}, \quad \lambda > \kappa^2.$$

(iii) The function $(r(\sqrt{\lambda})/\sqrt{\lambda})_{\lambda > \kappa^2}$ is a pseudo-resolvent on \mathcal{A} .

Proof. The implication $(i) \Rightarrow (ii)$ follows from the identities

 $T_{\mathcal{G}}(f \ast g) = T(\mathcal{G}(f \ast g)) = T(\mathcal{G}(f) \ast_c \mathcal{G}(g)) = T_{\mathcal{G}}(f)T_{\mathcal{G}}(g), \quad f,g \in L^1_{\omega_g}(\mathbb{R}^+,\ast).$

The implication (ii) \Rightarrow (iii) is part of Theorem 0.2 and (iii) \Rightarrow (i) is part of Theorem 3.1.

4. Algebra homomorphims and integrated cosine functions

In this section we characterize bounded algebra homomorphims from $L^1_{\omega}(\mathbb{R}^+, *_c)$ in terms of integrated cosine functions (Theorem 4.8). To show this we use certain fractional Banach algebras $\mathcal{T}^{(\alpha)}_+(\tau_{\alpha}, *_c)$ which have been introduced in [11]. We also need to give an extension of a result of [12] about uniformly bounded limits of fractional homomorphisms (Theorem 4.6).

Let \mathcal{D}_+ denote the set of test functions of compact support in $[0, \infty)$, and \mathcal{S}_+ denote the Schwartz class on $[0, \infty)$, i.e., functions that are infinitely differentiable and satisfy

$$\sup_{t\geq 0} \left| t^m \frac{d^n}{dt^n} f(t) \right| < \infty,$$

for any $m, n \in \mathbb{N} \cup \{0\}$.

Given $f \in S_+$, the Weyl fractional integral of f of order $\alpha > 0$ is defined by

$$W_+^{-\alpha}f(u) := \frac{1}{\Gamma(\alpha)} \int_u^\infty (t-u)^{\alpha-1} f(t) dt, \quad u \ge 0.$$

This operator $W_{+}^{-\alpha} : S_{+} \to S_{+}$ is one to one, its inverse, W_{+}^{α} , is the **Weyl** fractional derivative of order α and

$$W^{\alpha}_{+}f(t) = \frac{(-1)^n}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_t^\infty (s-t)^{n-\alpha-1} f(s) ds, \quad t \ge 0,$$

holds with $n = [\alpha] + 1$, see for example [14]. It is easy to check that $W_+^{\alpha} f = (-1)^{\alpha} f^{(\alpha)}$ if $\alpha \in \mathbb{N}$. The semigroup law $W_+^{\alpha+\beta} f = W_+^{\alpha}(W_+^{\beta}f)$ holds with $\alpha, \beta \in \mathbb{R}$, $W_+^0 = \text{Id}$, and $W_+^{\alpha}(f_{\lambda})(t) = \lambda^{\alpha} W_+^{\alpha}(f)(\lambda t)$ with $\lambda > 0$, if $f_{\lambda}(t) := f(\lambda t)$ and $f \in \mathcal{S}_+$ (cf. [14]).

Example 4: If $\lambda > 0$, then $\epsilon_{-\lambda} \in \mathcal{S}_+$ and

$$W_{+}^{-\alpha}(\epsilon_{-\lambda}) = \lambda^{-\alpha}\epsilon_{-\lambda}$$

Therefore, $W^{\alpha}_{+}\epsilon_{-\lambda} = \lambda^{\alpha}\epsilon_{-\lambda}$ for $\alpha \in \mathbb{R}$. We define functions $(\beta_{n,\lambda})_{n \in \mathbb{N}, \lambda > 0}$ by

$$\beta_{n,\lambda}(t) := t^n e^{-\lambda t}, \quad t \ge 0.$$

Note that $\beta_{n,\lambda}(t) = (-1)^n (d/d\lambda)^n \epsilon_{-\lambda}(t)$ for $t, \lambda > 0$ and $n \in \mathbb{N} \cup \{0\}$. To give the value of $W^{\alpha}_+(\beta_{n,\lambda})$ in Theorem 4.2, we show the following lemma.

LEMMA 4.1: If $\alpha \in \mathbb{R}$ and $f \in S_+$, then

$$W_{+}^{\alpha}(sf(s))(t) = tW_{+}^{\alpha}f(t) - \alpha W_{+}^{\alpha-1}f(t), \quad t > 0.$$

Proof. The case $\alpha < 0$ is shown in [14, p. 246]; if $\alpha > 0$ we have

$$W_{+}^{-\alpha}(sW_{+}^{\alpha}f(s) - \alpha W_{+}^{\alpha-1}f(s))(t) = tf(t) + \alpha W_{+}^{-1}f(t) - \alpha W_{+}^{-1}f(t) = tf(t)$$

with $t > 0$.

Polynomial solutions of the differential equation

$$zy''(z) + (\alpha + 1 - z)y'(z) + ny(z) = 0,$$

with n = 0, 1, 2... and $\alpha \in \mathbb{C}$, are called **generalized Laguerre polynomials**, and are denoted by $L_n^{(\alpha)}$. They satisfy a Rodrigues' formula,

(4.1)
$$L_n^{(\alpha)}(x) = \frac{x^{-\alpha} e^x}{n!} \frac{d^n}{dx^n} (x^{n+\alpha} e^{-x}),$$

see [10, p. 241], and we have

$$L_n^{(\alpha)}(x) = \sum_{m=0}^n (-1)^m \binom{n+\alpha}{n-m} \frac{x^m}{m!}, \quad x \in \mathbb{R},$$

where $\binom{n+\alpha}{n-m} = \frac{(\alpha+m+1)_{n-m}}{(n-m)!}$ and $(\alpha)_n = \alpha(\alpha+1)\cdots(\alpha+n-1)$.

Generalized Laguerre polynomials satisfy several recurrence equalities, see [10, p. 241], one of them being

(4.2)
$$xL_n^{(\alpha+1)}(x) = (n+\alpha+1)L_n^{(\alpha)}(x) - (n+1)L_{n+1}^{(\alpha)}(x), \quad x \in \mathbb{R}.$$

THEOREM 4.2: Let $\alpha \in \mathbb{R}$, $n \in \mathbb{N}$ and $\lambda > 0$. Then

$$W^{\alpha}_{+}(\beta_{n,\lambda})(t) = \lambda^{\alpha-n} e^{-\lambda t} (-1)^n n! L^{(\alpha-n)}_n(\lambda t), \quad t \ge 0.$$

Proof. Note that it is enough to show that

$$L_n^{(\alpha-n)}(x) = \frac{(-1)^n}{n!} e^x W_+^{\alpha}(t^n e^{-t})(x), \quad x \ge 0.$$

268

We prove this by induction on n. Take $\alpha > 0$; for n = 1 we apply Lemma 4.1 to get

$$W_{+}^{\alpha}(te^{-t})(x) = xW_{+}^{\alpha}(e^{-t})(x) - \alpha W_{+}^{\alpha-1}(e^{-t})(x) = e^{-x}(x-\alpha) = -L_{1}^{(\alpha-1)}(x).$$

Consider the case n + 1. By Lemma 4.1 we obtain that

$$W_{+}^{\alpha}(t^{n+1}e^{-t})(x) = xW_{+}^{\alpha}(t^{n}e^{-t})(x) - \alpha W_{+}^{\alpha-1}(t^{n}e^{-t})(x), \quad x \ge 0,$$

and by the induction hypothesis,

$$W_{+}^{\alpha}(t^{n+1}e^{-t})(x) = e^{-x}n!(-1)^{n} \left(xL_{n}^{(\alpha-n)}(x) - \alpha L_{n+1}^{(\alpha-1-n)}(x)\right), \quad x \ge 0.$$

Then we apply the recurrence formula (4.2) to derive that

$$W_{+}^{\alpha}(t^{n+1}e^{-t})(x) = e^{-x}n!(-1)^{n}(-1)(n+1)L_{n+1}^{(\alpha-n-1)}(x)$$
$$= e^{-x}(-1)^{n+1}(n+1)!L_{n+1}^{(\alpha-(n+1))}(x) \quad x \ge 0.$$

The case $\alpha < 0$ can be proved in a similar way.

In the remainder of this section we consider a continuous non-decreasing weight $\omega : \mathbb{R}^+ \to \mathbb{R}^+$ with $\omega(0) \neq 0$ and bound $\kappa \geq 0$. Then ω is an extendible weight due to the fact that

$$\omega(t-s) \le \omega(t) \le \omega(t) \frac{\omega(s)}{\omega(0)} = C\omega(t)\omega(s), \quad 0 \le s \le t.$$

Let $\tau_{\alpha}(t) := t^{\alpha}\omega(t), \ \alpha > 0$ and let $(R_t^{\theta})_{t>0}$ be the family of Riesz functions given by

$$R_t^{\theta}(s) := \frac{(t-s)^{\theta}}{\Gamma(\theta+1)} \chi_{(0,t)}(s),$$

with t, s > 0 and $\theta > -1$.

THEOREM 4.3 ([11, Theorem 3]): Let $\alpha > 0$. Then the expression

$$q_{\tau_{\alpha}}(f) := \frac{1}{\Gamma(\alpha+1)} \int_0^\infty \tau_{\alpha}(t) |W_+^{\alpha}f(t)| dt, \quad f \in \mathcal{D}_+,$$

defines a norm on \mathcal{D}_+ . We denote by $\mathcal{T}^{(\alpha)}_+(\tau_\alpha)$ the Banach space obtained as the completion of \mathcal{D}_+ in the norm $q_{\tau_{\alpha}}$. The following assertions hold:

- (i) $\mathcal{T}_{+}^{(\alpha)}(\tau_{\alpha}) \hookrightarrow \mathcal{T}_{+}^{(\alpha)}(t^{\alpha}) \hookrightarrow L^{1}(\mathbb{R}^{+}) \text{ and } \mathcal{T}_{+}^{(\alpha)}(\tau_{\alpha}) \hookrightarrow L^{1}_{\omega}(\mathbb{R}^{+}).$ (ii) $\mathcal{T}_{+}^{(\beta)}(\tau_{\beta}) \hookrightarrow \mathcal{T}_{+}^{(\alpha)}(\tau_{\alpha}); \text{ in particular, } \mathcal{T}_{+}^{(\beta)}(t^{\beta}) \hookrightarrow \mathcal{T}_{+}^{(\alpha)}(t^{\alpha}).$
- (iii) $R_t^{\nu-1} \in \mathcal{T}^{(\alpha)}_+(\tau_\alpha)$ with t > 0 and $\nu > \alpha$; and $q_{\tau_\alpha}(R_t^{\nu-1}) \le C_{\nu,\alpha} t^{\nu-\alpha} \tau_\alpha(t)$ for t > 0, where $C_{\nu,\alpha} > 0$ is independent of t.

Moreover, $q_{\tau_{\alpha}}(f *_{c} g) \leq C_{\alpha}q_{\tau_{\alpha}}(f)q_{\tau_{\alpha}}(g)$ for $f, g \in \mathcal{D}_{+}$, and $C_{\alpha} > 0$ is independent of f and g. We denote by $T_{+}^{(\alpha)}(\tau_{\alpha}, *_{c})$ the Banach algebra obtained as the completion of \mathcal{D}_{+} in the norm $q_{\tau_{\alpha}}$ with the cosine convolution product $*_{c}$.

Example 5: If $\lambda > \kappa$, then $\epsilon_{-\lambda} \in \mathcal{T}^{(\alpha)}_+(\tau_{\alpha})$ and

$$q_{\tau_{\alpha}}(\epsilon_{-\lambda}) \leq \lambda^{\alpha}/(\lambda-\kappa)^{\alpha+1}.$$

Since $\beta_{n,\lambda} = n! \underbrace{\epsilon_{-\lambda} * \cdots * \epsilon_{-\lambda}}_{n+1 \text{ times}}$ for $n \in \mathbb{N} \cup \{0\}$ and $\lambda > 0$, we obtain $\beta_{n,\lambda} \in \mathcal{T}^{(\alpha)}_+(\tau_{\alpha})$ for $n \in \mathbb{N} \cup \{0\}$ and $\lambda > \kappa$.

Example 6: Solutions of the Hermite differential equation

$$w''(z) - 2zw'(z) + 2\nu w(z) = 0,$$

with $\nu \in \mathbb{C}$ are called **Hermite functions** of order ν , and are denoted H_{ν} . For $\nu \in \mathbb{N}$, the functions H_{ν} are polynomials known as Hermite polynomials. They satisfy a Rodrigues' formula

$$H_n(z) = (-1)^n e^{z^2} \frac{d^n}{dz^n} e^{-z^2}.$$

Moreover, for $\nu \in \mathbb{R}$, some Hermite functions satisfy that

$$W^{\nu}_{+}(e^{-t^{2}})(t) = e^{-t^{2}}H_{\nu}(t), \quad t \in \mathbb{R},$$

and

(4.3)
$$|H_{\nu}(z)| \leq C_{\nu}(1+|z|^{\nu}), \quad \nu > 0, \ \Re z > 0,$$

see for example [8, p. 344].

PROPOSITION 4.4: Let $(g^z)_{\Re z>0}$ be the Gaussian semigroup. Then $(g^z)_{\Re z>0} \subset \mathcal{T}^{(\alpha)}_+(\tau_{\alpha})$ and

$$q_{\tau_{\alpha}}(g^{z}) \leq C_{\alpha} e^{\kappa^{2}|z|^{2}/\Re z} \left(\left(\frac{|z|}{\Re z}\right)^{\alpha+1/2} + \kappa^{\alpha} \frac{|z|^{3/2\alpha+1/2}}{(\Re z)^{\alpha+1/2}} + \kappa^{2\alpha} \frac{|z|^{3\alpha+1/2}}{(\Re z)^{2\alpha+1/2}} \right), \ \Re z > 0,$$

where $\tau_{\alpha}(t) \leq Ct^{\alpha}e^{\kappa t}$ for $\kappa, t \geq 0$.

Proof. Note that for $\alpha, z > 0$,

$$W_{+}^{\alpha}(g^{z})(t) = \frac{1}{\sqrt{\pi z}} W_{+}^{\alpha}(e^{-(\frac{r}{2\sqrt{z}})^{2}})(t) = \frac{1}{2^{\alpha}\sqrt{\pi z^{(\alpha+1)/2}}} H_{\alpha}\left(\frac{t}{2\sqrt{z}}\right) e^{-t^{2}/(4z)},$$

for t > 0 and then for $z \in \mathbb{C}^+$, because of the analytic continuation principle. Now we apply (4.3) to obtain

$$q_{\tau_{\alpha}}(g^{z}) \leq \frac{1}{2^{\alpha}\sqrt{\pi}|z|^{(\alpha+1)/2}} \int_{0}^{\infty} |H_{\alpha}(t/(2\sqrt{z}))|e^{-t^{2}\Re z/4|z|^{2}}\tau_{\alpha}(t)dt$$
$$\leq \frac{C_{\alpha}}{|z|^{(\alpha+1)/2}} \int_{0}^{\infty} \left(1 + \frac{t^{\alpha}}{2^{\alpha}|z|^{\alpha/2}}\right) e^{-t^{2}\Re z/4|z|^{2}} t^{\alpha}e^{\kappa t}dt.$$

We change the variable $u = t\sqrt{\Re z}/(2|z|) - (\kappa|z|)/\sqrt{\Re z}$, and get

$$q_{\tau_{\alpha}}(g^{z}) \leq C_{\alpha} e^{\kappa^{2}|z|^{2}/\Re z} \Big(\Big(\frac{|z|}{\Re z}\Big)^{\alpha+1/2} + \kappa^{\alpha} \frac{|z|^{3/2\alpha+1/2}}{(\Re z)^{\alpha+1/2}} + \kappa^{2\alpha} \frac{|z|^{3\alpha+1/2}}{(\Re z)^{2\alpha+1/2}} \Big),$$

for $\Re z > 0$.

LEMMA 4.5: The function $(\kappa, \infty) \to \mathcal{T}^{(\alpha)}_+(\tau_{\alpha}), \lambda \mapsto \epsilon_{-\lambda}$ is infinitely differentiable in the norm topology of $\mathcal{T}^{(\alpha)}_+(\tau_{\alpha})$ and

$$\frac{d^n \epsilon_{-\lambda}}{d\lambda^n} = (-1)^n \beta_{n,\lambda},$$

for each $n \in \mathbb{N} \cup \{0\}$ and $\lambda > \kappa$.

Proof. Take $\lambda > \kappa$. Then

$$\beta_{n,\lambda}(t) = (-1)^n \frac{d^n}{d\lambda^n} \epsilon_{-\lambda}(t) = (-1)^n \int_0^\infty \frac{d^n}{d\lambda^n} \Big(\lambda e^{-\lambda^2 s}\Big)(\lambda) g^s(t) ds, \quad t \ge 0,$$

where we use the equality (3.1). Note that

$$\int_0^\infty \left| \frac{d^n}{d\lambda^n} \left(\lambda e^{-\lambda^2 s} \right)(\lambda) \right| q_{\tau_\alpha}(g^s) ds < \infty,$$

by Proposition 4.4 and we obtain that

$$\beta_{n,\lambda} = (-1)^n \int_0^\infty \frac{d^n}{d\lambda^n} \Big(\lambda e^{-\lambda^2 s}\Big)(\lambda) g^s ds = (-1)^n \frac{d^n}{d\lambda^n} \epsilon_{-\lambda},$$

in the norm topology of $\mathcal{T}^{(\alpha)}_+(\tau_{\alpha})$.

The next result is a generalization of [12, Theorem 3.1] concerning bounded limits of fractional homomorphisms.

THEOREM 4.6: Let X be a Banach space, ω a continuous non-decreasing weight with $\omega(0) \neq 0$ and bound $\kappa \geq 0$; and $\tau_{\alpha}(t) := t^{\alpha}\omega(t)$ for $t \geq 0$ and $\alpha \geq 0$.

(i) For every bounded homomorphism $T : L^1_{\omega}(\mathbb{R}^+) \to X$, there exists a family of bounded homomorphisms $T_{\alpha} : \mathcal{T}^{(\alpha)}_+(\tau_{\alpha}) \to X$, $\alpha > 0$, such that $||T_{\alpha}|| \leq ||T||$ and $T_{\alpha}(\epsilon_{-\lambda}) = T(\epsilon_{-\lambda})$ for each $\lambda \in (\kappa, \infty)$.

(ii) Conversely, if for each $\alpha > 0$ there exists a bounded homomorphism $T_{\alpha}: \mathcal{T}^{(\alpha)}_{+}(\tau_{\alpha}) \to X$ such that $T_{\alpha}(\epsilon_{-\lambda})$ does not depend on α for each $\lambda \in (\omega, \infty)$ and $\limsup_{\alpha \to 0^{+}} ||T_{\alpha}|| < \infty$, then there exists a unique bounded homomorphism $T: L^{1}_{\omega}(\mathbb{R}^{+}) \to X$ such that $T(\epsilon_{-\lambda}) = T_{\alpha}(\epsilon_{-\lambda})$ for each $\lambda \in (\kappa, \infty), \alpha > 0$ and $||T|| \leq \limsup_{\alpha \to 0^{+}} ||T_{\alpha}||$.

Proof. The first part follows from $\mathcal{T}^{(\alpha)}_+(\tau_{\alpha}) \hookrightarrow L^1_{\omega}(\mathbb{R}^+)$, see part (i) of Theorem 4.3. To prove (ii), we use Theorem 0.1. We define $r(\lambda) := T_{\alpha}(\epsilon_{-\lambda})$ for each $\lambda > \kappa$. The family $(r(\lambda))_{\lambda \in (\omega,\infty)}$ is well-defined. We apply Lemma 4.5 to obtain $r^{(n)}(\lambda) = (-1)^n T_{\alpha}(\beta_{n,\lambda})$ and Theorem 4.2 to conclude that

$$\|r^{(n)}(\lambda)\| \le \|T_{\alpha}\| q_{\tau_{\alpha}}(\beta_{n,\lambda}) = \frac{\|T_{\alpha}\|n!}{\Gamma(\alpha+1)} \lambda^{\alpha-n} \int_{0}^{\infty} e^{-\lambda t} |L_{n}^{(\alpha-n)}(\lambda t)| t^{\alpha} \omega(t) dt,$$

for each $n \in \mathbb{N}$, $\lambda \in (\kappa, \infty)$ and $\alpha > 0$. Since

$$\lim_{\alpha \to 0^+} L_n^{(\alpha-n)}(\lambda t) = (-1)^n (\lambda t)^n / n!,$$

we have

$$\|r^{(n)}(\lambda)\| \le \limsup_{\alpha \to 0^+} \|T_\alpha\| \int_0^\infty t^n e^{-\lambda t} \omega(t) dt = \limsup_{\alpha \to 0^+} \|T_\alpha\| \|\beta_{n,\lambda}\|_{\omega},$$

for each $n \in \mathbb{N}$ and $\lambda \in (\kappa, \infty)$. By Theorem 0.1 there exists a unique bounded homomorphism $T: L^1_{\omega}(\mathbb{R}^+) \to X$ such that $T(\epsilon_{-\lambda}) = r(\lambda) = T_{\alpha}(\epsilon_{-\lambda})$ for each $\lambda \in (\kappa, \infty)$ and $||T|| \leq \limsup_{\alpha \to 0^+} ||T_{\alpha}||$.

To finish the section we characterize bounded algebra homomorphisms from $L^1_{\omega}(\mathbb{R}^+, *_c)$ into a Banach algebra \mathcal{A} . The case of $L^1_{\omega}(\mathbb{R}^+, *)$ has been considered in detail in several papers ([3], [4, Theorem 3.3], [9, Section 10]). In our setting, cosine functions need to be considered.

Definition 4.7: For any $\alpha > 0$, an α -times integrated cosine function is a continuous mapping $c_{\alpha}(\cdot) : [0, \infty) \to \mathcal{A}$ such that $c_{\alpha}(0) = 0$ and satisfying

$$2\Gamma(\alpha)c_{\alpha}(t)c_{\alpha}(s) = \int_{t}^{t+s} (t+s-r)^{\alpha-1}c_{\alpha}(r)dr - \int_{0}^{s} (t+s-r)^{\alpha-1}c_{\alpha}(r)dr$$

$$(4.4) \qquad \qquad + \int_{t-s}^{t} (r-t+s)^{\alpha-1}c_{\alpha}(r)dr + \int_{0}^{s} (r+t-s)^{\alpha-1}c_{\alpha}(r)dr$$

whenever t > s > 0.

If $(c_{\alpha}(t))_{t\geq 0}$ is an α -times integrated cosine function in \mathcal{A} , then $(c_{\nu}(t))_{t\geq 0}$, where

$$c_{\nu}(t) := \frac{1}{\Gamma(\nu - \alpha)} \int_0^t (t - s)^{\nu - \alpha - 1} c_{\alpha}(s) ds, \quad t \ge 0,$$

is a ν -times integrated cosine function in \mathcal{A} for every $\nu > \alpha$. The set of Riesz functions $(R_t^{\nu-1})_{t\geq 0}$ is an example of ν -times integrated cosine function in $\mathcal{T}^{(\alpha)}_+(\tau_{\alpha}, *_c)$ for $\nu > \alpha \geq 0$, see [11].

The following result is inspired by [12, Theorem 4.2].

THEOREM 4.8: Let \mathcal{A} be a Banach algebra, ω a continuous non-decreasing weight with $\omega(0) \neq 0$ and bound $\kappa \geq 0$. Let $\tau_{\alpha}(t) := t^{\alpha}\omega(t)$ for $t, \alpha \geq 0$ and $r \in C^{(\infty)}((\kappa, \infty), \mathcal{A})$ such that

$$M = \sup\left\{\frac{\|r^{(k)}(\lambda)\|}{\|t^k e^{-\lambda t}\|_{\omega}} \colon k \in \mathbb{N} \cup \{0\}, \lambda \in (\kappa, \infty)\right\}.$$

Then the following conditions are equivalent:

- (i) $M < \infty$ and $(r(\sqrt{\lambda})/\sqrt{\lambda})_{\lambda > \kappa^2}$ is a pseudo-resolvent on \mathcal{A} .
- (ii) There exists a bounded algebra homomorphism $T : L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{A}$ such that $T(\epsilon_{-\lambda}) = r(\lambda)$ for each $\lambda \in (\kappa, \infty)$.
- (iii) For any $\alpha > 0$, there exists an α -times integrated cosine function $(c_{\alpha}(t))_{t\geq 0}$ in \mathcal{A} such that $||c_{\alpha}(t)|| \leq \frac{C}{\Gamma(\alpha+1)}\tau_{\alpha}(t)$ for some constant C > 0 and every $t \geq 0$, and $r(\lambda) = \lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} c_{\alpha}(t) dt$ for $\lambda > \kappa$.
- (iv) For any $\alpha > 0$, there exists a bounded algebra homomorphism T_{α} : $T_{+}^{(\alpha)}(\tau_{\alpha}, *_{c}) \to \mathcal{A}$ such that $T_{\alpha}(\epsilon_{-\lambda}) = r(\lambda)$ for each $\lambda \in (\kappa, \infty)$ and $\sup_{\alpha>0} ||T_{\alpha}|| < \infty$.

Furthermore, if there exists a bounded algebra homomorphism

$$T: L^1_\omega(\mathbb{R}^+, *_c) \to \mathcal{A}$$

such that $T(\epsilon_{-\lambda}) = r(\lambda)$ for each $\lambda \in (\kappa, \infty)$, then it is unique, $T(f) = T_{\alpha}(f)$ for $f \in \mathcal{T}^{(\alpha)}_{+}(\tau_{\alpha})$ and every $\alpha > 0$ and

$$M = ||T|| = \sup_{\alpha > 0} ||T_{\alpha}|| = \inf \Big\{ C : ||c_{\alpha}(t)|| \le C\tau_{\alpha}(t)/\Gamma(\alpha + 1), \ t \ge 0 \Big\}.$$

Proof. (i) \Leftrightarrow (ii) is the content of Theorem 3.1. (ii) \Rightarrow (iii) Noting that, for each t > 0, the Riesz function $R_t^{\alpha-1}$ is a member of $L_{\omega}^1(\mathbb{R}^+, *_c)$, we define $c_{\alpha}(t) := T(R_t^{\alpha-1})$ for t > 0 and $c_{\alpha}(0) := 0$. Since $(R_t^{\alpha-1})_{t>0}$ is an α -times integrated cosine function in $L_{\omega}^1(\mathbb{R}^+, *_c)$, $(c_{\alpha}(t))_{t\geq 0}$ is an α -times integrated cosine function in \mathcal{A} and

$$\|c_{\alpha}(t)\| \leq \|T\| \|R_t^{\alpha-1}\|_{\omega} \leq \|T\| \frac{t^{\alpha}}{\Gamma(\alpha+1)} \omega(t),$$

for $t \ge 0$. By the continuity of T, we have

$$\lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} c_{\alpha}(t) dt = \lambda^{\alpha} T \Big(\int_{0}^{\infty} e^{-\lambda t} R_{t}^{\alpha - 1} dt \Big) = \lambda^{\alpha} T (W^{-\alpha} \epsilon_{-\lambda})$$
$$= T(\epsilon_{-\lambda}) = r(\lambda)$$

for $\lambda > \omega$. (iii) \Rightarrow (iv) We define $T_{\alpha} : \mathcal{T}^{(\alpha)}_{+}(\tau_{\alpha}, *_{c}) \to \mathcal{A}$ by $T_{\alpha}(f) := \int_{0}^{\infty} W^{\alpha}_{+}f(t)c_{\alpha}(t)dt, \quad f \in \mathcal{D}_{+}.$

Following the same arguments as in [11, Theorem 4], we prove that T_{α} is a bounded algebra homomorphism with $||T_{\alpha}|| \leq C < \infty$ for any $\alpha > 0$. Since $\epsilon_{-\lambda} \in \mathcal{T}^{(\alpha)}_{+}(\tau_{\alpha})$ for $\lambda > \kappa$ and $W^{\alpha}_{+}(\epsilon_{-\lambda}) = \lambda^{\alpha}\epsilon_{-\lambda}$, we have $T_{\alpha}(\epsilon_{-\lambda}) = r(\lambda)$ for $\lambda > \kappa$.

The implication (iv) \Rightarrow (ii) follows from assertion (ii) of Theorem 4.6.

Finally, if there exists a bounded algebra homomorphism $T: L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{A}$ satisfying $T(\epsilon_{-\lambda}) = r(\lambda)$ for each $\lambda \in (\omega, \infty)$, then $\mathcal{T}^{(\alpha)}_+(\tau_{\alpha}) \hookrightarrow L^1_{\omega}(\mathbb{R}^+)$ and $T(f) = T_{\alpha}(f)$ for $f \in \mathcal{T}^{(\alpha)}_+(\tau_{\alpha})$ and for all $\alpha > 0$. Moreover, we have collected in the proof the following inequalities,

$$||T|| = M = \sup_{\alpha > 0} ||T_{\alpha}|| \le \inf \left\{ C : ||c_{\alpha}(t)|| \le C \frac{t^{\alpha} e^{\omega t}}{\Gamma(\alpha + 1)}, \ t \ge 0 \right\} \le ||T||.$$

whence we get the equality.

5. Representations and the generation theorem for cosine functions

The main purpose in this section is to extend the Sova-Da Prato-Giusti theorem on generation of cosine functions (Theorem 5.3). Our generalization allows one to give a new proof of the classical generation theorem as a corollary of the variant of Kisyński theorem on $L^1_{\omega}(\mathbb{R}^+, *_c)$ (Theorem 3.1). Moreover, we may conjeture that the Sova-Da Prato-Giusti theorem and Theorem 3.1 are equivalent, see [3].

Let \mathcal{A} be a Banach algebra and X a Banach space. A bounded algebra homomorphism from \mathcal{A} into $\mathcal{B}(X)$ is called here a **representation**. Suppose that \mathcal{A} is commutative and has a bounded approximate identity $\{e_n\}_{n \in \mathbb{N}}$. Given

a representation $\Phi : \mathcal{A} \to \mathcal{B}(X)$, the **regularity space** \mathcal{R}_{Φ} is the closed linear span of $\{\Phi(a)x: a \in \mathcal{A}, x \in X\}$, so that

$$\mathcal{R}_{\Phi} = \{x \in X \colon \lim_{n \to \infty} \Phi(e_n)x = x\}$$

(cf. [4]). By Cohen's theorem, $\mathcal{R}_{\Phi} = \{\Phi(a)x : a \in \mathcal{A}, x \in X\}$ and there exists a unique representation $\hat{\Phi} : Mul(\mathcal{A}) \to \mathcal{B}(\mathcal{R}_{\Phi})$, called the **extended representation** of Φ , such that

$$\hat{\Phi}(T_a)x = \Phi(a)x, \quad x \in \mathcal{R}_{\Phi},$$

where $T_a(b) := ab$ for $a, b \in \mathcal{A}$. Moreover, $\|\Phi\| \le \|\hat{\Phi}\| \le (\liminf_n \|e_n\|) \|\Phi\|$, see [4, Theorem 2.4].

Consider now the case $\mathcal{A} = L^1_{\omega}(\mathbb{R}^+, *_c)$, where ω is an extendible weight function and $Mul(L^1_{\omega}(\mathbb{R}^+, *_c)) \cong M_{\omega}(\mathbb{R}^+, *_c)$ (Theorem 2.6). Then any representation $\Phi : L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(X)$ can be extended to $\hat{\Phi} : M_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(\mathcal{R}_{\Phi})$.

The set of Dirac measures $(\delta_t)_{t\geq 0}$ plays an important role in relation to $L^1_{\omega}(\mathbb{R}^+,*)$: the family $(\delta_t)_{t\geq 0}$ is contained in $M_{\omega}(\mathbb{R}^+,*)$; the semigroup property $\delta_t * \delta_s = \delta_{t+s}$ holds for $t, s \geq 0$ and $T_{\delta_t} f \to_{t\to 0^+} f$ on $L^1_{\omega}(\mathbb{R}^+,*)$, where $T_{\delta_t} f(s) := \delta_t * f(s) = f(s-t)$ for $s, t \geq 0$. Here we discuss the role of Dirac measures $(\delta_t)_{t\geq 0}$ in connection with $L^1_{\omega}(\mathbb{R}^+,*_c)$. We start by recalling some definitions and results about cosine functions which can be found in [1].

A map $C(\cdot): [0,\infty) \to \mathcal{B}(X)$ satisfies the cosine functional equation if

$$2C(t)C(s) = C(t+s) + C(s-t), \quad s \ge t \ge 0,$$

and is a **cosine function** when, in addition, it is strongly continuous in $[0, \infty)$ and $C(0) = I_X$. An operator (A, D(A)) is the generator of a cosine function $(C(t))_{t>0}$, when

$$D(A) = \{ x \in X : C(\cdot) x \in C^{(2)}([0,\infty), X) \}, \quad Ax = C''(0)x \text{ for } x \in D(A).$$

The generator of a cosine function (A, D(A)) is densely defined. Also, a cosine function is always exponentially bounded (i.e., there exist $M, \kappa \geq 0$ such that $\|C(t)\| \leq Me^{\kappa t}$ for $t \geq 0$), and we have

$$\lambda(\lambda^2 - A)^{-1}x = \int_0^\infty e^{-\lambda t} C(t) x dt, \quad \lambda > \kappa, \ x \in X.$$

It is readily seen that $\delta_t \circ \delta_s = \delta_{s-t}$ if $s \ge t$; $\delta_t \circ \delta_s = 0$ if s < t and

(5.1)
$$2(\delta_t *_c \delta_s) = \delta_{t+s} + \delta_{s-t}, \quad s \ge t \ge 0.$$

LEMMA 5.1: The family of operators $(T_{\delta_t})_{t>0}$ defined by

$$T_{\delta_t}(f) := \delta_t *_c f, \quad t \ge 0, \ f \in L^1_{\omega}(\mathbb{R}^+, *_c),$$

is a cosine function on $L^1_{\omega}(\mathbb{R}^+, *_c)$.

Proof. We write $C(t) := T_{\delta_t}$ and consider the map $C : [0, \infty) \to \mathcal{B}(L^1_{\omega}(\mathbb{R}^+, *_c))$. This map $C(\cdot)$ is well-defined (see Section 2) and the cosine equation holds from the equality (5.1). We need to check that the map $t \mapsto C(t)f$ is continuous on $L^1_{\omega}(\mathbb{R}^+, *_c)$. But this is a consequence of the equality

$$C(t)(f)(u) = \frac{1}{2} \left(\chi_{[t,\infty)}(u) f(u-t) + f(t+u) + \chi_{[0,t]}(u) f(t-u) \right),$$

for $t, u \ge 0$.

In the next result we consider representations of $L^1_{\omega}(\mathbb{R}^+, *_c)$ on X; see [4, Theorem 3.3] for the case $L^1_{\omega}(\mathbb{R}^+, *)$.

THEOREM 5.2: For a representation $\Phi : L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(X)$, let \mathcal{R}_{Φ} be the regularity space of Φ and let $\hat{\Phi} : M_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(\mathcal{R}_{\Phi})$ be the extended representation of Φ . For each $t \geq 0$, put

$$C(t) := \hat{\Phi}(T_{\delta_t}), \quad t \ge 0.$$

Then $(C(t))_{t\geq 0}$ is a cosine function on \mathcal{R}_{Φ} such that $||C(t)|| \leq ||\hat{\Phi}||\omega(t)$ for $t\geq 0$, and

$$\Phi(f)x = \int_0^\infty f(t)C(t)xdt,$$

for $x \in \mathcal{R}_{\Phi}$ and $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$.

Proof. From Lemma 5.1, it is straightforward to check that $(C(t))_{t\geq 0}$ is a cosine function on \mathcal{R}_{Φ} and

$$||C(t)|| \le ||\hat{\Phi}|| \, ||\delta_t||_{\omega} = ||\hat{\Phi}||\omega(t), \quad t \ge 0.$$

Now we consider $\Phi: L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(\mathcal{R}_{\Phi})$ and define $\Psi: L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(\mathcal{R}_{\Phi})$ as

$$\Psi(f)x := \int_0^\infty f(t)C(t)xdt,$$

for $x \in \mathcal{R}_{\Phi}$ and $f \in L^{1}_{\omega}(\mathbb{R}^{+}, *_{c})$. The map Ψ is a bounded algebra homomorphism ([13, Theorem 3.3]) and

$$\Psi(\epsilon_{-\lambda})x = \int_0^\infty e^{-\lambda t} C(t) x dt = \int_0^\infty e^{-\lambda t} \hat{\Phi}(T_{\delta_t}) x dt = \hat{\Phi}\left(\int_0^\infty e^{-\lambda t} T_{\delta_t}\right) x$$
$$= \hat{\Phi}(T_{\epsilon_{-\lambda}})x = \Phi(\epsilon_{-\lambda})x,$$

for $x \in \mathcal{R}_{\Phi}$ and $\lambda > \kappa$, where κ is a bound of ω . Since the linear span of $(\epsilon_{-\lambda})_{\lambda > \kappa}$ is dense in $L^1_{\omega}(\mathbb{R}^+, *_c)$, we obtain that

$$\Phi(f)x = \int_0^\infty f(t)C(t)xdt$$

for $x \in \mathcal{R}_{\Phi}$ and $f \in L^{1}_{\omega}(\mathbb{R}^{+}, *_{c})$.

Remark: In fact, it can be proved that

$$\hat{\Phi}(T_{\mu})x = \int_0^\infty C(t)xd\mu(t), \quad x \in \mathcal{R}_{\Phi}, \ \mu \in M_{\omega}(\mathbb{R}^+, *_c),$$

along the same lines as in [4, Theorem 3.3].

Let ω be an extendible weight with bound $\kappa \geq 0$ and $r : (\kappa, \infty) \to \mathcal{B}(X)$ a function such that

(5.2)
$$r(\lambda)r(\mu) = \frac{1}{\lambda^2 - \mu^2} (\lambda r(\mu) - \mu r(\lambda)), \quad \lambda, \mu > \kappa.$$

We define the **regularity space** of r as

$$\mathcal{R}_r := \{ x \in X : \lim_{\lambda \to \infty} \lambda r(\lambda) x = x \}.$$

It is clear that if $r : (\kappa, \infty) \to \mathcal{B}(X)$ satisfies (5.2), then $R : (\kappa^2, \infty) \to \mathcal{B}(X)$ given by

$$R(\lambda) := r(\sqrt{\lambda})/\sqrt{\lambda}, \quad \lambda > \kappa^2,$$

is a pseudo-resolvent on $\mathcal{B}(X)$. Moreover, $\mathcal{R}_R = \mathcal{R}_r$, where \mathcal{R}_R is the regularity space of the pseudo-resolvent $(R(\lambda))_{\lambda > \kappa^2}$ defined by

$$\mathcal{R}_R := \{ x \in X : \lim_{\lambda \to \infty} \lambda R(\lambda) x = x \}.$$

If $||r||_{W,\omega,\kappa} < \infty$, then there exists a representation $\phi : L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(X)$ such that $r(\lambda) = \phi(\epsilon_{-\lambda})$ for $\lambda > \kappa$ (Theorem 3.1). It will be called **the representation associated with** r. Since $L^1_{\omega}(\mathbb{R}^+, *_c)$ has a bounded approximate identity (Proposition 1.4), we may consider the **regularity space** \mathcal{R}_{ϕ} . It turns out that

$$\mathcal{R}_{\phi} = \mathcal{R}_{r}$$

In particular, \mathcal{R}_r is invariant for all $\phi(f)$ with $f \in L^1_{\omega}(\mathbb{R}^+)$, and any element of \mathcal{R}_r can be represented as $\phi(f)x$ for some $f \in L^1_{\omega}(\mathbb{R}^+)$ and $x \in X$.

Now we give the announced generalization of the Sova-Da Prato-Giusti theorem.

THEOREM 5.3 (Generalized Sova-Da Prato-Giusti theorem): Let ω be an extendible weight with bound $\kappa \geq 0$, X a Banach space and $r: (\kappa, \infty) \to \mathcal{B}(X)$ a map such that

$$r(\lambda)r(\mu) = \frac{1}{\lambda^2 - \mu^2} (\lambda r(\mu) - \mu r(\lambda)), \quad \lambda, \mu > \kappa,$$

in $\mathcal{B}(X)$ with

 $\|r\|_{W,\omega,\kappa} < \infty.$

Let $\phi: L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(X)$ be the representation of $L^1_{\omega}(\mathbb{R}^+, *_c)$ associated with r. Then there exists a unique cosine function $(C(t))_{t\geq 0}$ on \mathcal{R}_r such that

(5.3)
$$C(t)\phi(f)x = \phi(T_{\delta_t}(f))x,$$

for $t \ge 0$, $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$ and $x \in X$. Moreover, the cosine function $(C(t))_{t\ge 0}$ satisfies

$$r(\lambda)x = \int_0^\infty e^{-\lambda t} C(t)x dt,$$

for $\lambda > \kappa$, $x \in \mathcal{R}_r$ and $||C(t)|| \le M\omega(t)$ for $t \ge 0$.

Proof. Applying Theorem 5.2 to the representation $\phi : L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(X)$ associated with r, we see that there exists a cosine function $(C(t))_{t\geq 0}$ on $\mathcal{R}_{\phi}(=\mathcal{R}_r)$ such that $\|C(t)\| \leq M\omega(t)$ for $t \geq 0$. The cosine function $(C(t))_{t\geq 0}$ satisfies

$$C(t)\phi(f) = \hat{\phi}(T_{\delta_t})\hat{\phi}(T_f) = \hat{\phi}(T_{\delta_t *_c f}) = \phi(T_{\delta_t}(f)),$$

for $t \ge 0$ and $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$ and

$$r(\lambda)x = \phi(\epsilon_{-\lambda})x = \int_0^\infty e^{-\lambda t} C(t)x dt,$$

for $x \in \mathcal{R}_r$ and $\lambda > \kappa$. Finally, the uniqueness of $(C(t))_{t\geq 0}$ follows from (5.3) and the fact that every element of \mathcal{R}_r can be represented as $\phi(f)x$ for some $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$ and $x \in X$.

Let $R = (R(\lambda))_{\lambda > \kappa}$ be a pseudo-resolvent on $\mathcal{B}(X)$. It is known that the kernel and range of $R(\lambda)$ are independent of λ , so we denote them by ker(R) and Im(R) respectively. Note that $(R(\lambda))_{\lambda > \kappa}$ is the resolvent of a densely defined

closed operator (A, D(A)), i.e. $R(\lambda) = (\lambda - A)^{-1}$, if and only if ker $(R) = \{0\}$ and $\overline{\text{Im}(R)} = X$.

We conclude the paper by deducing the Sova-Da Prato-Giusti theorem from Theorem 5.3.

THEOREM 5.4: Let (A, D(A)) be a densely defined operator on a Banach space X. The following assertions are equivalent:

- (i) (A, D(A)) generates a cosine function.
- (ii) There exist $\kappa, M \ge 0$ such that $(\kappa^2, \infty) \subset \rho(A)$ and

$$\frac{1}{n!} \left| (\lambda - \kappa)^{n+1} \frac{d^n}{d\lambda^n} (\lambda (\lambda^2 - A)^{-1}) \right| \le M,$$

for all $\lambda > \kappa$ and $n \in \mathbb{N} \cup \{0\}$.

Proof. (i) \Rightarrow (ii) There exist $\kappa \geq 0$ and M > 0 such that $||C(t)|| \leq Me^{\kappa t}$. Take $\omega(t) := e^{\kappa t}$ for $t \geq 0$ and define $\Phi: L^1_{\omega}(\mathbb{R}^+, *_c) \to \mathcal{B}(X)$ by

$$\Phi(f)x := \int_0^\infty f(t)C(t)xdt,$$

for $x \in X$ and $f \in L^1_{\omega}(\mathbb{R}^+, *_c)$. Note that

$$\Phi(\epsilon_{-\lambda}) = \lambda (\lambda^2 - A)^{-1}, \quad \lambda > \kappa,$$

and $||t^n e^{-\lambda t}||_{\omega} = n!/(\lambda - \kappa)^{n+1}$ for $n \in \mathbb{N} \cup \{0\}$ and $\lambda > \kappa$. Applying Theorem 0.1, we obtain

$$\frac{1}{n!} \left| (\lambda - \kappa)^{n+1} \frac{d^n}{d\lambda^n} (\lambda (\lambda^2 - A)^{-1}) \right| \le M',$$

for all $\lambda > \kappa$ and $n \in \mathbb{N} \cup \{0\}$.

(ii) \Rightarrow (i) Let $r(\lambda) := \lambda(\lambda^2 - A)^{-1}$ for $\lambda > \kappa$. Then

$$r(\lambda)r(\mu) = \frac{1}{\lambda^2 - \mu^2} (\lambda r(\mu) - \mu r(\lambda)), \quad \lambda, \mu > \kappa,$$

 $||r||_{W,\omega,\kappa} < \infty$ with $\omega(t) = e^{\kappa t}$ for $t \ge 0$. Then, applying Theorem 5.3, we obtain a cosine family $(C(t))_{t\ge 0}$ on \mathcal{R}_r . Note that $\mathcal{R}_r = \overline{\mathrm{Im}(R)} = X$ (where $R(\mu) = (\mu - A)^{-1}$ for $\mu > \kappa^2$). It is easy to check that (A, D(A)) is the generator of $(C(t))_{t\ge 0}$.

ACKNOWLEDGEMENT. The author is grateful to J. E. Galé, W. Chojnacki, A. Bobrowski, J. Kisyński and the referee for a patient reading, valuable suggestions and several references that led to the improvement of this paper.

References

- W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics., Vol. 96, Birkhäuser Verlag, Basel, 2001.
- [2] A. Bobrowski, The Widder-Arendt theorem on inverting of the Laplace transform, and its relationships with the theory of semigroups of operators, Methods in Functional Analysis and Topology 3(1997), 1–39.
- [3] W. Chojnacki, On the equivalence of a theorem of Kisyński and the Hille-Yosida generation theorem, Proceedings of the American Mathematical Society 126 (1998), 491–497.
- [4] W. Chojnacki, Multipliers algebras, Banach bundles, and one-parameter semigroups, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV (4) 28 (1999), 287–322.
- [5] W. Chojnacki, A generalization of the Widder-Arendt theorem, Proceedings of the Edinburgh Mathematical Society 45 (2002), 161–179.
- [6] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series 24, Claredon Press, Oxford, 2000.
- [7] G. Da Prato and E. Giusti, Una caratterizzazione dei generatori di funzioni coseno astratte, Bollettina della Unione Matematica Italiana 22 (1967), 357–362.
- [8] E. B. Davies, Integral Transforms and their Applications, Springer Verlag, Berlin 1985.
- [9] J. Kisyński, Around Widder's characterization of the Laplace transform of an element of L[∞](ℝ⁺), Annales Polonici Mathematici 74 (2000), 161–200.
- [10] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966.
- P. J. Miana, Almost-distribution cosine functions and integrated cosine functions, Studia Mathematica 166 (2005), 171–180.
- [12] P. J. Miana, Uniformly bounded limit of fractional homomorphisms, Proceedings of the American Mathematical Society 133 (2005), 2569–2575.
- [13] P. J. Miana, Vector-valued cosine transforms, Semigroup Forum 71 (2005), 119–133.
- [14] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- [15] A. M. Sinclair, Continuous Semigroups in Banach Algebras, London Mathematical Society, Lecture Note Series 63, Cambridge U. P., Cambridge, 1982.
- [16] I. N. Sneddon, The Use of Integral Transform, McGraw-Hill, New York, 1972.
- [17] M. Sova, Cosine operator functions, Rozprawy Matematyczne 49 (1966), 1-47.
- [18] V. K. Tuan, Integral transform of Fourier cosine convolution type. Journal of Mathematical Analysis and Applications 229 (1999), 519–529.